TUSC3 loss alters the ER stress response and accelerates prostate cancer growth in vivo
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24435307
PubMed Central
PMC3894551
DOI
10.1038/srep03739
PII: srep03739
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů MeSH
- endoplazmatické retikulum metabolismus ultrastruktura MeSH
- genový knockdown MeSH
- glykosylace MeSH
- hexosyltransferasy chemie metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- membránové proteiny chemie nedostatek genetika metabolismus MeSH
- modely nemocí na zvířatech MeSH
- nádorové buněčné linie MeSH
- nádorové supresorové proteiny nedostatek genetika metabolismus MeSH
- nádory prostaty genetika metabolismus patologie MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- signální transdukce MeSH
- stres endoplazmatického retikula * genetika MeSH
- tumor burden MeSH
- vazba proteinů MeSH
- viabilita buněk genetika MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dolichyl-diphosphooligosaccharide - protein glycotransferase MeSH Prohlížeč
- hexosyltransferasy MeSH
- membránové proteiny MeSH
- nádorové supresorové proteiny MeSH
- protoonkogenní proteiny c-akt MeSH
- STT3B protein, human MeSH Prohlížeč
- TUSC3 protein, human MeSH Prohlížeč
Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular.
Clinical Institute of Pathology Medical University of Vienna Austria
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Jemal A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2008). PubMed
Berger M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011). PubMed PMC
Taylor B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2011). PubMed PMC
Bergerheim U. S., Kunimi K., Collins V. P. & Ekman P. Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. Gene. Chromosome. Canc. 3, 215–220 (1991). PubMed
Bova G. S. et al. Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer. Genomics 35, 46–54 (1996). PubMed
MacGrogan D., Levy A., Bova G. S., Isaacs W. B. & Bookstein R. Structure and methylation-associated silencing of a gene within a homozygously deleted region of human chromosome band 8p22. Genomics 35, 55–65 (1996). PubMed
Levy A., Dang U. C. & Bookstein R. High-density screen of human tumor cell lines for homozygous deletions of loci on chromosome arm 8p. Gene. Chromosome. Canc. 24, 42–47 (1999). PubMed
Arbieva Z. H. et al. High-resolution physical map and transcript identification of a prostate cancer deletion interval on 8p22. Genome Res. 10, 244–257 (2000). PubMed PMC
Cooke S. L. et al. High-resolution array CGH clarifies events occurring on 8p in carcinogenesis. BMC Cancer 8, 288 (2008). PubMed PMC
Pribill I. et al. High frequency of allelic imbalance at regions of chromosome arm 8p in ovarian carcinoma. Cancer Genet. Cytogenet. 129, 23–29 (2001). PubMed
Pils D. et al. Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma: N33 and EFA6R have a potential impact on overall survival. Cancer 104, 2417–2429 (2005). PubMed
Pils D. et al. Methylation status of TUSC3 is a prognostic factor in ovarian cancer. Cancer 119, 946–954 (2013). PubMed
Vanhara P. et al. Loss of the oligosaccharyl transferase subunit TUSC3 promotes proliferation and migration of ovarian cancer cells. Int. J. Oncol. 42, 1383–1389 (2013). PubMed
Kelleher D. J. & Gilmore R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16, 47R–62R (2006). PubMed
Kelleher D. J., Karaoglu D., Mandon E. C. & Gilmore R. Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol. Cell 12, 101–111 (2003). PubMed
Mohorko E., Glockshuber R. & Aebi M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J. Inherit. Metab. Dis. 34, 869–878 (2011). PubMed
Garshasbi M. et al. A defect in the TUSC3 gene is associated with autosomal recessive mental retardation. Am. J. Hum. Genet. 82, 1158–1164 (2008). PubMed PMC
Khan M. A. et al. A novel deletion mutation in the TUSC3 gene in a consanguineous Pakistani family with autosomal recessive nonsyndromic intellectual disability. BMC Med. Genet. 12, 56 (2011). PubMed PMC
Molinari F. et al. Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am. J. Hum. Genet. 82, 1150–1157 (2008). PubMed PMC
Garshasbi M. et al. A novel nonsense mutation in TUSC3 is responsible for non-syndromic autosomal recessive mental retardation in a consanguineous Iranian family. Am. J. Med. Genet. A 155A, 1976–1980 (2011). PubMed
Ohtsubo K. & Marth J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006). PubMed
Helenius A. & Aebi M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001). PubMed
Freeze H. H. Genetic defects in the human glycome. Nat. Rev. Genet. 7, 537–551 (2006). PubMed
Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. U S A 99, 10231–10233 (2002). PubMed PMC
Fang M. et al. The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell 143, 711–724 (2011). PubMed
Hetz C., Martinon F., Rodriguez D. & Glimcher L. H. The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol. Rev. 91, 1219–1243 (2011). PubMed
Ozcan L. & Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 63, 317–328 (2012). PubMed PMC
Harding H. P., Calfon M., Urano F., Novoa I. & Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu. Rev. Cell. Dev. Biol. 18, 575–599 (2002). PubMed
Schulz B. L. et al. Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proc. Natl. Acad. Sci. U S A 106, 11061–11066 (2009). PubMed PMC
Contessa J. N. et al. Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target for cancer therapy. Clin. Cancer Res. 16, 3205–3214 (2010). PubMed PMC
Shen Z., Huang S., Fang M. & Wang X. ENTPD5, an endoplasmic reticulum UDPase, alleviates ER stress induced by protein overloading in AKT-activated cancer cells. Cold Spring Harb. Symp. Quant. Biol. 76, 217–223 (2011). PubMed
Fu Y. et al. Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc. Natl. Acad. Sci. U S A 105, 19444–19449 (2008). PubMed PMC
Dennis J. W., Granovsky M. & Warren C. E. Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34 (1999). PubMed
Fukuda M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res. 56, 2237–2244 (1996). PubMed
Lau K. S. et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007). PubMed
Karaoglu D., Kelleher D. J. & Gilmore R. Functional characterization of Ost3p. Loss of the 34-kD subunit of the Saccharomyces cerevisiae oligosaccharyltransferase results in biased underglycosylation of acceptor substrates. J. Cell Biol. 130, 567–577 (1995). PubMed PMC
Zhou H. & Clapham D. E. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc. Natl. Acad. Sci. U S A 106, 15750–15755 (2009). PubMed PMC
Ruiz-Canada C., Kelleher D. J. & Gilmore R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136, 272–283 (2009). PubMed PMC
Sato T. et al. STT3B-dependent posttranslational N-glycosylation as a surveillance system for secretory protein. Mol. Cell 47, 99–110 (2012). PubMed
Goel H. L., Li J., Kogan S. & Languino L. R. Integrins in prostate cancer progression. Endocr. Relat. Cancer 15, 657–664 (2008). PubMed PMC
Kariya Y. & Gu J. N-glycosylation of ss4 integrin controls the adhesion and motility of keratinocytes. PLoS One 6, e27084 (2011). PubMed PMC
Gabius H. J. M. V. D. W., Andre S. & Villalobo A. Down-regulation of the Epidermal Growth Factor Receptor by Altering N-Glycosylation: Emerging Role of beta1,4-Galactosyltransferases. Anticancer Res. 32, 1565–1572 (2012). PubMed
Kekeeva T. V. et al. [Abberant methylation of p16, HIC1, N33 and GSTP1 genes in tumor epitelium and tumor-associated stromal cells of prostate cancer]. Mol. Biol. (Mosk) 41, 79–85 (2007). PubMed
Hirota M., Kitagaki M., Itagaki H. & Aiba S. Quantitative measurement of spliced XBP1 mRNA as an indicator of endoplasmic reticulum stress. J. Toxicol. Sci. 31, 149–156 (2006). PubMed
van Schadewijk A., van't Wout E. F., Stolk J. & Hiemstra P. S. A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress Chaperones 17, 275–279 (2012). PubMed PMC
Samali A., Fitzgerald U., Deegan S. & Gupta S. Methods for monitoring endoplasmic reticulum stress and the unfolded protein response. Int. J. Cell Biol. 2010, 830307 (2010). PubMed PMC
Streit M., Lex A., Kalkusch M., Zatloukal K. & Schmalstieg D. Caleydo: connecting pathways and gene expression. Bioinformatics 25, 2760–2761 (2009). PubMed PMC
TUSC3: functional duality of a cancer gene