TUSC3 loss alters the ER stress response and accelerates prostate cancer growth in vivo
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24435307
PubMed Central
PMC3894551
DOI
10.1038/srep03739
PII: srep03739
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů MeSH
- endoplazmatické retikulum metabolismus ultrastruktura MeSH
- genový knockdown MeSH
- glykosylace MeSH
- hexosyltransferasy chemie metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- membránové proteiny chemie nedostatek genetika metabolismus MeSH
- modely nemocí na zvířatech MeSH
- nádorové buněčné linie MeSH
- nádorové supresorové proteiny nedostatek genetika metabolismus MeSH
- nádory prostaty genetika metabolismus patologie MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- signální transdukce MeSH
- stres endoplazmatického retikula * genetika MeSH
- tumor burden MeSH
- vazba proteinů MeSH
- viabilita buněk genetika MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dolichyl-diphosphooligosaccharide - protein glycotransferase MeSH Prohlížeč
- hexosyltransferasy MeSH
- membránové proteiny MeSH
- nádorové supresorové proteiny MeSH
- protoonkogenní proteiny c-akt MeSH
- STT3B protein, human MeSH Prohlížeč
- TUSC3 protein, human MeSH Prohlížeč
Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular.
Clinical Institute of Pathology Medical University of Vienna Austria
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Jemal A. PubMed
Bergerheim U. S., Kunimi K., Collins V. P. & Ekman P. Deletion mapping of chromosomes 8, 10, and 16 in human prostatic carcinoma. Gene. Chromosome. Canc. 3, 215–220 (1991). PubMed
Bova G. S. PubMed
MacGrogan D., Levy A., Bova G. S., Isaacs W. B. & Bookstein R. Structure and methylation-associated silencing of a gene within a homozygously deleted region of human chromosome band 8p22. Genomics 35, 55–65 (1996). PubMed
Levy A., Dang U. C. & Bookstein R. High-density screen of human tumor cell lines for homozygous deletions of loci on chromosome arm 8p. Gene. Chromosome. Canc. 24, 42–47 (1999). PubMed
Pribill I. PubMed
Pils D. PubMed
Pils D. PubMed
Vanhara P. PubMed
Kelleher D. J. & Gilmore R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16, 47R–62R (2006). PubMed
Kelleher D. J., Karaoglu D., Mandon E. C. & Gilmore R. Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol. Cell 12, 101–111 (2003). PubMed
Mohorko E., Glockshuber R. & Aebi M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J. Inherit. Metab. Dis. 34, 869–878 (2011). PubMed
Garshasbi M. PubMed
Ohtsubo K. & Marth J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006). PubMed
Helenius A. & Aebi M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001). PubMed
Freeze H. H. Genetic defects in the human glycome. Nat. Rev. Genet. 7, 537–551 (2006). PubMed
Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl. Acad. Sci. U S A 99, 10231–10233 (2002). PubMed PMC
Fang M. PubMed
Hetz C., Martinon F., Rodriguez D. & Glimcher L. H. The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol. Rev. 91, 1219–1243 (2011). PubMed
Ozcan L. & Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 63, 317–328 (2012). PubMed PMC
Harding H. P., Calfon M., Urano F., Novoa I. & Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu. Rev. Cell. Dev. Biol. 18, 575–599 (2002). PubMed
Shen Z., Huang S., Fang M. & Wang X. ENTPD5, an endoplasmic reticulum UDPase, alleviates ER stress induced by protein overloading in AKT-activated cancer cells. Cold Spring Harb. Symp. Quant. Biol. 76, 217–223 (2011). PubMed
Dennis J. W., Granovsky M. & Warren C. E. Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34 (1999). PubMed
Fukuda M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res. 56, 2237–2244 (1996). PubMed
Lau K. S. PubMed
Karaoglu D., Kelleher D. J. & Gilmore R. Functional characterization of Ost3p. Loss of the 34-kD subunit of the Saccharomyces cerevisiae oligosaccharyltransferase results in biased underglycosylation of acceptor substrates. J. Cell Biol. 130, 567–577 (1995). PubMed PMC
Zhou H. & Clapham D. E. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc. Natl. Acad. Sci. U S A 106, 15750–15755 (2009). PubMed PMC
Ruiz-Canada C., Kelleher D. J. & Gilmore R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136, 272–283 (2009). PubMed PMC
Sato T. PubMed
Goel H. L., Li J., Kogan S. & Languino L. R. Integrins in prostate cancer progression. Endocr. Relat. Cancer 15, 657–664 (2008). PubMed PMC
Kariya Y. & Gu J. N-glycosylation of ss4 integrin controls the adhesion and motility of keratinocytes. PLoS One 6, e27084 (2011). PubMed PMC
Gabius H. J. M. V. D. W., Andre S. & Villalobo A. Down-regulation of the Epidermal Growth Factor Receptor by Altering N-Glycosylation: Emerging Role of beta1,4-Galactosyltransferases. Anticancer Res. 32, 1565–1572 (2012). PubMed
Kekeeva T. V. PubMed
Hirota M., Kitagaki M., Itagaki H. & Aiba S. Quantitative measurement of spliced XBP1 mRNA as an indicator of endoplasmic reticulum stress. J. Toxicol. Sci. 31, 149–156 (2006). PubMed
van Schadewijk A., van't Wout E. F., Stolk J. & Hiemstra P. S. A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress Chaperones 17, 275–279 (2012). PubMed PMC
Samali A., Fitzgerald U., Deegan S. & Gupta S. Methods for monitoring endoplasmic reticulum stress and the unfolded protein response. Int. J. Cell Biol. 2010, 830307 (2010). PubMed PMC
Streit M., Lex A., Kalkusch M., Zatloukal K. & Schmalstieg D. Caleydo: connecting pathways and gene expression. Bioinformatics 25, 2760–2761 (2009). PubMed PMC
TUSC3: functional duality of a cancer gene