Intact cell mass spectrometry coupled with machine learning reveals minute changes induced by single gene silencing
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38707401
PubMed Central
PMC11066331
DOI
10.1016/j.heliyon.2024.e29936
PII: S2405-8440(24)05967-X
Knihovny.cz E-zdroje
- Klíčová slova
- Bioinformatics, Biotyping, Cell culture, Intact cell MALDI TOF MS, Machine learning, Quality control, R programming language, TUSC3,
- Publikační typ
- časopisecké články MeSH
Intact (whole) cell MALDI TOF mass spectrometry is a commonly used tool in clinical microbiology for several decades. Recently it was introduced to analysis of eukaryotic cells, including cancer and stem cells. Besides targeted metabolomic and proteomic applications, the intact cell MALDI TOF mass spectrometry provides a sufficient sensitivity and specificity to discriminate cell types, isogenous cell lines or even the metabolic states. This makes the intact cell MALDI TOF mass spectrometry a promising tool for quality control in advanced cell cultures with a potential to reveal batch-to-batch variation, aberrant clones, or unwanted shifts in cell phenotype. However, cellular alterations induced by change in expression of a single gene has not been addressed by intact cell mass spectrometry yet. In this work we used a well-characterized human ovarian cancer cell line SKOV3 with silenced expression of a tumor suppressor candidate 3 gene (TUSC3). TUSC3 is involved in co-translational N-glycosylation of proteins with well-known global impact on cell phenotype. Altogether, this experimental design represents a highly suitable model for optimization of intact cell mass spectrometry and analysis of spectral data. Here we investigated five machine learning algorithms (k-nearest neighbors, decision tree, random forest, partial least squares discrimination, and artificial neural network) and optimized their performance either in pure populations or in two-component mixtures composed of cells with normal or silenced expression of TUSC3. All five algorithms reached accuracy over 90 % and were able to reveal even subtle changes in mass spectra corresponding to alterations of TUSC3 expression. In summary, we demonstrate that spectral fingerprints generated by intact cell MALDI-TOF mass spectrometry coupled to a machine learning classifier can reveal minute changes induced by alteration of a single gene, and therefore contribute to the portfolio of quality control applications in routine cell and tissue cultures.
Department of Chemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Dueñas M.E., Larson E.A., Lee Y.J. Toward mass spectrometry imaging in the metabolomics scale: increasing metabolic coverage through multiple on-tissue chemical modifications. Front. Plant Sci. 2019;10:1–11. doi: 10.3389/fpls.2019.00860. PubMed DOI PMC
Harkin C., Smith K.W., Cruickshank F.L., Logan Mackay C., Flinders B., Heeren R.M.A., Moore T., Brockbank S., Cobice D.F. On‐tissue chemical derivatization in mass spectrometry imaging. Mass Spectrom. Rev. 2021;41:662–694. doi: 10.1002/mas.21680. PubMed DOI PMC
Ashfaq M.Y., Da’na D.A., Al-Ghouti M.A. Application of MALDI-TOF MS for identification of environmental bacteria: a review. J. Environ. Manag. 2022;305:114359–114370. doi: 10.1016/j.jenvman.2021.114359. PubMed DOI
Munteanu B., Hopf C. Emergence of whole-cell MALDI-MS biotyping for high-throughput bioanalysis of mammalian cells? Bioanalysis. 2013;5:885–893. doi: 10.4155/bio.13.47. PubMed DOI
Williams T.L., Andrzejewski D., Lay J.O., Musser S.M. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J. Am. Soc. Mass Spectrom. 2003;14:342–351. doi: 10.1016/S1044-0305(03)00065-5. PubMed DOI
Valletta E., Kučera L., Prokeš L., Amato F., Pivetta T., Hampl A., Havel J., Vaňhara P. Multivariate calibration approach for quantitative determination of cell-line cross contamination by intact cell mass spectrometry and artificial neural networks. PLoS One. 2016;11:1–14. doi: 10.1371/journal.pone.0147414. PubMed DOI PMC
Vaňhara P., Kučera L., Prokeš L., Jurečková L., Peña-Méndez E.M., Havel J., Hampl A. Intact cell mass spectrometry as a quality control tool for revealing minute phenotypic changes of cultured human embryonic stem cells. Stem Cells Transl Med. 2018;7:109–114. doi: 10.1002/sctm.17-0107. PubMed DOI PMC
Karger A., Bettin B., Lenk M., Mettenleiter T.C. Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing. J Virol Methods. 2010;164:116–121. doi: 10.1016/j.jviromet.2009.11.022. PubMed DOI
Buchanan C.M., Malik A.S., Cooper G.J.S. Direct visualisation of peptide hormones in cultured pancreatic islet alpha- and beta-cells by intact-cell mass spectrometry. Rapid Commun. Mass Spectrom. 2007;21:3452–3458. doi: 10.1002/rcm.3253. PubMed DOI
Kober S.L., Meyer-Alert H., Grienitz D., Hollert H., Frohme M. Intact cell mass spectrometry as a rapid and specific tool for the differentiation of toxic effects in cell-based ecotoxicological test systems. Anal. Bioanal. Chem. 2015;407:7721–7731. doi: 10.1007/s00216-015-8937-2. PubMed DOI PMC
Petukhova V.Z., Young A.N., Wang J., Wang M., Ladanyi A., Kothari R., Burdette J.E., Sanchez L.M. Whole cell MALDI fingerprinting is a robust tool for differential profiling of two-component mammalian cell mixtures. J. Am. Soc. Mass Spectrom. 2019;30:344–354. doi: 10.1007/s13361-018-2088-6. PubMed DOI PMC
Kotasová H., Capandová M., Pelková V., Dumková J., Koledová Z., Remšík J., Souček K., Garlíková Z., Sedláková V., Rabata A., Vaňhara P., Moráň L., Pečinka L., Porokh V., Kučírek M., Streit L., Havel J., Hampl A. Expandable lung epithelium differentiated from human embryonic stem cells. Tissue Eng Regen Med. 2022;19:1033–1050. doi: 10.1007/s13770-022-00458-0. PubMed DOI PMC
Valletta E., Kučera L., Prokeš L., Amato F., Pivetta T., Hampl A., Havel J., Vaňhara P. Multivariate calibration approach for quantitative determination of cell-line cross contamination by intact cell mass spectrometry and artificial neural networks. PLoS One. 2016;11 doi: 10.1371/journal.pone.0147414. PubMed DOI PMC
Soler L., Uzbekova S., Blesbois E., Druart X., Labas V. Intact cell MALDI-TOF mass spectrometry, a promising proteomic profiling method in farm animal clinical and reproduction research. Theriogenology. 2020;150:113–121. doi: 10.1016/j.theriogenology.2020.02.037. PubMed DOI
Mohorko E., Owen R.L., Malojčić G., Brozzo M.S., Aebi M., Glockshuber R. Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure. 2014;22:590–601. doi: 10.1016/j.str.2014.02.013. PubMed DOI
Vaková K., Horak P., Vaňhara P. TUSC3: functional duality of a cancer gene. Cell. Mol. Life Sci. 2018;75:849–857. doi: 10.1007/s00018-017-2660-4. PubMed DOI PMC
Vaňhara P., Horak P., Pils D., Anees M., Petz M., Gregor W., Zeillinger R., Krainer M. Loss of the oligosaccharyl transferase subunit TUSC3 promotes proliferation and migration of ovarian cancer cells. Int. J. Oncol. 2013;42:1383–1389. doi: 10.3892/ijo.2013.1824. PubMed DOI
Kratochvílová K., Horak P., Ešner M., Souček K., Pils D., Anees M., Tomasich E., Dráfi F., Jurtíková V., Hampl A., Krainer M., Vaňhara P. Tumor suppressor candidate 3 (TUSC3) prevents the epithelial-to-mesenchymal transition and inhibits tumor growth by modulating the endoplasmic reticulum stress response in ovarian cancer cells. Int. J. Cancer. 2015;137:1330–1340. doi: 10.1002/ijc.29502. PubMed DOI
Pils D., Horak P., Vanhara P., Anees M., Petz M., Alfanz A., Gugerell A., Wittinger M., Gleiss A., Auner V., Tong D., Zeillinger R., Braicu E.I., Sehouli J., Krainer M. Methylation status of TUSC3 is a prognostic factor in ovarian cancer. Cancer. 2013;119:946–954. doi: 10.1002/cncr.27850. PubMed DOI
Gibb S., Strimmer K. Maldiquant: A versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012;28:2270–2271. doi: 10.1093/bioinformatics/bts447. PubMed DOI
Rousseeuw P.J., Croux C. Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 1993;88:1273. doi: 10.2307/2291267. DOI
Bromba M.U.A., Ziegler H. Application hints for Savitzky-Golay digital smoothing filters. Anal. Chem. 1981;53:1583–1586. doi: 10.1021/ac00234a011. DOI
Ryan C.G., Clayton E., Griffin W.L., Sie S.H., Cousens D.R. SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl. Instrum. Methods Phys. Res. B. 1988;34:396–402. doi: 10.1016/0168-583X(88)90063-8. DOI
Topić Popović N., Kazazić S.P., Bojanić K., Strunjak-Perović I., Čož-Rakovac R. Sample preparation and culture condition effects on MALDI-TOF MS identification of bacteria: a review. Mass Spectrom. Rev. 2023;42:1589–1603. doi: 10.1002/mas.21739. PubMed DOI
Balluff B., Hopf C., Porta Siegel T., Grabsch H.I., Heeren R.M.A. Batch effects in MALDI mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 2021;32:628–635. doi: 10.1021/jasms.0c00393. PubMed DOI PMC
Szájli E., Fehér T., Medzihradszky K.F. Investigating the quantitative nature of MALDI-TOF MS. Mol. Cell. Proteomics. 2008;7:2410–2418. doi: 10.1074/mcp.M800108-MCP200. PubMed DOI
Pan Y., Caudill S., Li R., Caldwell K.L. Median and quantile tests under complex survey design using SAS and R. Comput. Methods Progr. Biomed. 2017;176:139–148. doi: 10.1016/j.cmpb.2014.07.007.Median. PubMed DOI PMC