Intact cell mass spectrometry coupled with machine learning reveals minute changes induced by single gene silencing

. 2024 May 15 ; 10 (9) : e29936. [epub] 20240422

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38707401
Odkazy

PubMed 38707401
PubMed Central PMC11066331
DOI 10.1016/j.heliyon.2024.e29936
PII: S2405-8440(24)05967-X
Knihovny.cz E-zdroje

Intact (whole) cell MALDI TOF mass spectrometry is a commonly used tool in clinical microbiology for several decades. Recently it was introduced to analysis of eukaryotic cells, including cancer and stem cells. Besides targeted metabolomic and proteomic applications, the intact cell MALDI TOF mass spectrometry provides a sufficient sensitivity and specificity to discriminate cell types, isogenous cell lines or even the metabolic states. This makes the intact cell MALDI TOF mass spectrometry a promising tool for quality control in advanced cell cultures with a potential to reveal batch-to-batch variation, aberrant clones, or unwanted shifts in cell phenotype. However, cellular alterations induced by change in expression of a single gene has not been addressed by intact cell mass spectrometry yet. In this work we used a well-characterized human ovarian cancer cell line SKOV3 with silenced expression of a tumor suppressor candidate 3 gene (TUSC3). TUSC3 is involved in co-translational N-glycosylation of proteins with well-known global impact on cell phenotype. Altogether, this experimental design represents a highly suitable model for optimization of intact cell mass spectrometry and analysis of spectral data. Here we investigated five machine learning algorithms (k-nearest neighbors, decision tree, random forest, partial least squares discrimination, and artificial neural network) and optimized their performance either in pure populations or in two-component mixtures composed of cells with normal or silenced expression of TUSC3. All five algorithms reached accuracy over 90 % and were able to reveal even subtle changes in mass spectra corresponding to alterations of TUSC3 expression. In summary, we demonstrate that spectral fingerprints generated by intact cell MALDI-TOF mass spectrometry coupled to a machine learning classifier can reveal minute changes induced by alteration of a single gene, and therefore contribute to the portfolio of quality control applications in routine cell and tissue cultures.

Zobrazit více v PubMed

Dueñas M.E., Larson E.A., Lee Y.J. Toward mass spectrometry imaging in the metabolomics scale: increasing metabolic coverage through multiple on-tissue chemical modifications. Front. Plant Sci. 2019;10:1–11. doi: 10.3389/fpls.2019.00860. PubMed DOI PMC

Harkin C., Smith K.W., Cruickshank F.L., Logan Mackay C., Flinders B., Heeren R.M.A., Moore T., Brockbank S., Cobice D.F. On‐tissue chemical derivatization in mass spectrometry imaging. Mass Spectrom. Rev. 2021;41:662–694. doi: 10.1002/mas.21680. PubMed DOI PMC

Ashfaq M.Y., Da’na D.A., Al-Ghouti M.A. Application of MALDI-TOF MS for identification of environmental bacteria: a review. J. Environ. Manag. 2022;305:114359–114370. doi: 10.1016/j.jenvman.2021.114359. PubMed DOI

Munteanu B., Hopf C. Emergence of whole-cell MALDI-MS biotyping for high-throughput bioanalysis of mammalian cells? Bioanalysis. 2013;5:885–893. doi: 10.4155/bio.13.47. PubMed DOI

Williams T.L., Andrzejewski D., Lay J.O., Musser S.M. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J. Am. Soc. Mass Spectrom. 2003;14:342–351. doi: 10.1016/S1044-0305(03)00065-5. PubMed DOI

Valletta E., Kučera L., Prokeš L., Amato F., Pivetta T., Hampl A., Havel J., Vaňhara P. Multivariate calibration approach for quantitative determination of cell-line cross contamination by intact cell mass spectrometry and artificial neural networks. PLoS One. 2016;11:1–14. doi: 10.1371/journal.pone.0147414. PubMed DOI PMC

Vaňhara P., Kučera L., Prokeš L., Jurečková L., Peña-Méndez E.M., Havel J., Hampl A. Intact cell mass spectrometry as a quality control tool for revealing minute phenotypic changes of cultured human embryonic stem cells. Stem Cells Transl Med. 2018;7:109–114. doi: 10.1002/sctm.17-0107. PubMed DOI PMC

Karger A., Bettin B., Lenk M., Mettenleiter T.C. Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing. J Virol Methods. 2010;164:116–121. doi: 10.1016/j.jviromet.2009.11.022. PubMed DOI

Buchanan C.M., Malik A.S., Cooper G.J.S. Direct visualisation of peptide hormones in cultured pancreatic islet alpha- and beta-cells by intact-cell mass spectrometry. Rapid Commun. Mass Spectrom. 2007;21:3452–3458. doi: 10.1002/rcm.3253. PubMed DOI

Kober S.L., Meyer-Alert H., Grienitz D., Hollert H., Frohme M. Intact cell mass spectrometry as a rapid and specific tool for the differentiation of toxic effects in cell-based ecotoxicological test systems. Anal. Bioanal. Chem. 2015;407:7721–7731. doi: 10.1007/s00216-015-8937-2. PubMed DOI PMC

Petukhova V.Z., Young A.N., Wang J., Wang M., Ladanyi A., Kothari R., Burdette J.E., Sanchez L.M. Whole cell MALDI fingerprinting is a robust tool for differential profiling of two-component mammalian cell mixtures. J. Am. Soc. Mass Spectrom. 2019;30:344–354. doi: 10.1007/s13361-018-2088-6. PubMed DOI PMC

Kotasová H., Capandová M., Pelková V., Dumková J., Koledová Z., Remšík J., Souček K., Garlíková Z., Sedláková V., Rabata A., Vaňhara P., Moráň L., Pečinka L., Porokh V., Kučírek M., Streit L., Havel J., Hampl A. Expandable lung epithelium differentiated from human embryonic stem cells. Tissue Eng Regen Med. 2022;19:1033–1050. doi: 10.1007/s13770-022-00458-0. PubMed DOI PMC

Valletta E., Kučera L., Prokeš L., Amato F., Pivetta T., Hampl A., Havel J., Vaňhara P. Multivariate calibration approach for quantitative determination of cell-line cross contamination by intact cell mass spectrometry and artificial neural networks. PLoS One. 2016;11 doi: 10.1371/journal.pone.0147414. PubMed DOI PMC

Soler L., Uzbekova S., Blesbois E., Druart X., Labas V. Intact cell MALDI-TOF mass spectrometry, a promising proteomic profiling method in farm animal clinical and reproduction research. Theriogenology. 2020;150:113–121. doi: 10.1016/j.theriogenology.2020.02.037. PubMed DOI

Mohorko E., Owen R.L., Malojčić G., Brozzo M.S., Aebi M., Glockshuber R. Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure. 2014;22:590–601. doi: 10.1016/j.str.2014.02.013. PubMed DOI

Vaková K., Horak P., Vaňhara P. TUSC3: functional duality of a cancer gene. Cell. Mol. Life Sci. 2018;75:849–857. doi: 10.1007/s00018-017-2660-4. PubMed DOI PMC

Vaňhara P., Horak P., Pils D., Anees M., Petz M., Gregor W., Zeillinger R., Krainer M. Loss of the oligosaccharyl transferase subunit TUSC3 promotes proliferation and migration of ovarian cancer cells. Int. J. Oncol. 2013;42:1383–1389. doi: 10.3892/ijo.2013.1824. PubMed DOI

Kratochvílová K., Horak P., Ešner M., Souček K., Pils D., Anees M., Tomasich E., Dráfi F., Jurtíková V., Hampl A., Krainer M., Vaňhara P. Tumor suppressor candidate 3 (TUSC3) prevents the epithelial-to-mesenchymal transition and inhibits tumor growth by modulating the endoplasmic reticulum stress response in ovarian cancer cells. Int. J. Cancer. 2015;137:1330–1340. doi: 10.1002/ijc.29502. PubMed DOI

Pils D., Horak P., Vanhara P., Anees M., Petz M., Alfanz A., Gugerell A., Wittinger M., Gleiss A., Auner V., Tong D., Zeillinger R., Braicu E.I., Sehouli J., Krainer M. Methylation status of TUSC3 is a prognostic factor in ovarian cancer. Cancer. 2013;119:946–954. doi: 10.1002/cncr.27850. PubMed DOI

Gibb S., Strimmer K. Maldiquant: A versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012;28:2270–2271. doi: 10.1093/bioinformatics/bts447. PubMed DOI

Rousseeuw P.J., Croux C. Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 1993;88:1273. doi: 10.2307/2291267. DOI

Bromba M.U.A., Ziegler H. Application hints for Savitzky-Golay digital smoothing filters. Anal. Chem. 1981;53:1583–1586. doi: 10.1021/ac00234a011. DOI

Ryan C.G., Clayton E., Griffin W.L., Sie S.H., Cousens D.R. SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl. Instrum. Methods Phys. Res. B. 1988;34:396–402. doi: 10.1016/0168-583X(88)90063-8. DOI

Topić Popović N., Kazazić S.P., Bojanić K., Strunjak-Perović I., Čož-Rakovac R. Sample preparation and culture condition effects on MALDI-TOF MS identification of bacteria: a review. Mass Spectrom. Rev. 2023;42:1589–1603. doi: 10.1002/mas.21739. PubMed DOI

Balluff B., Hopf C., Porta Siegel T., Grabsch H.I., Heeren R.M.A. Batch effects in MALDI mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 2021;32:628–635. doi: 10.1021/jasms.0c00393. PubMed DOI PMC

Szájli E., Fehér T., Medzihradszky K.F. Investigating the quantitative nature of MALDI-TOF MS. Mol. Cell. Proteomics. 2008;7:2410–2418. doi: 10.1074/mcp.M800108-MCP200. PubMed DOI

Pan Y., Caudill S., Li R., Caldwell K.L. Median and quantile tests under complex survey design using SAS and R. Comput. Methods Progr. Biomed. 2017;176:139–148. doi: 10.1016/j.cmpb.2014.07.007.Median. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...