Artificial intelligence in pancreatic cancer histopathology and diagnostics - implications for clinical decisions and biomarker discovery?
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MUNI/A/1738/2024
Masaryk University
MUNI/A/1558/2023
Masaryk University
MUNI/A/1558/2023
Masaryk University
MUNI/A/1738/2024
Masaryk University
NU23-08-00241
Czech Health Research Council
NU23-08-00241
Czech Health Research Council
NU23-08-00241
Czech Health Research Council
NU23-08-00241
Czech Health Research Council
NU23-08-00241
Czech Health Research Council
NU23-08-00241
Czech Health Research Council
NU23-08-00241
Czech Health Research Council
PubMed
40528234
PubMed Central
PMC12175320
DOI
10.1186/s13008-025-00158-w
PII: 10.1186/s13008-025-00158-w
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial intelligence, Biomarker discovery, Machine learning, Multimodal learning, Pancreatic cancer, Pancreatic ductal adenocarcinoma,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Artificial intelligence (AI) and machine learning (ML) are rapidly advancing fields within computer science, driving significant progress in cancer diagnostics. Various ML models have been developed to assist diagnosis, guide therapy decisions, and facilitate early disease detection. In this review, we discuss diverse AI and ML approaches and critically evaluate their applications and limitations in pancreatic cancer histopathology, diagnostics, and biomarker discovery.
Center for Precision Medicine University Hospital Brno Brno Czech Republic
Department of Biostatistics St Anne's University Hospital Brno Brno Czech Republic
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic
Department of Pathology University Hospital Brno Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: the path to the clinic. Nat Med. 2021;27(5):775–84. 10.1038/s41591-021-01343-4. PubMed DOI
Försch S, Klauschen F, Hufnagl P, Roth W. Artificial intelligence in pathology. Dtsch Arzteblatt Int. 2021;118(12):194–204. 10.3238/arztebl.m2021.0011. PubMed DOI PMC
Burzykowski T, Rousseau A-J, Geubbelmans M, Valkenborg D. Introduction to machine learning. Am J Orthod Dentofac Orthop. 2023;163(5):732–4. 10.1016/j.ajodo.2023.02.005. PubMed DOI
Salvi M, Acharya UR, Molinari F, Meiburger KM. The impact of Pre- and Post-Image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis. Comput Biol Med. 2021;128:104129. 10.1016/j.compbiomed.2020.104129. PubMed DOI
Kosaraju S, Park J, Lee H, Yang JW, Kang M. Deep Learning-Based framework for Slide-Based histopathological image analysis. Sci Rep. 2022;12(1):19075. 10.1038/s41598-022-23166-0. PubMed DOI PMC
Mun SK, Wong KH, Lo S-CB, Li Y, Bayarsaikhan S. Artificial Intelligence for the Future Radiology Diagnostic Service. PubMed PMC
Haeberle L, Esposito I. Pathology of pancreatic Cancer. Transl Gastroenterol Hepatol. 2019;4:50. 10.21037/tgh.2019.06.02. PubMed DOI PMC
Groot VP, Rezaee N, Wu W, Cameron JL, Fishman EK, Hruban RH, Weiss MJ, Zheng L, Wolfgang CL, He J, Patterns. Timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma. Ann Surg. 2018;267(5):936–45. 10.1097/SLA.0000000000002234. PubMed DOI
Sántha P, Lenggenhager D, Finstadsveen A, Dorg L, Tøndel K, Amrutkar M, Gladhaug IP, Verbeke C. Morphological heterogeneity in pancreatic Cancer reflects structural and functional divergence. Cancers. 2021;13(4):895. 10.3390/cancers13040895. PubMed DOI PMC
Verbeke C. Morphological heterogeneity in ductal adenocarcinoma of the Pancreas–. Does It Matter? Pancreatology. 2016;16(3):295–301. 10.1016/j.pan.2016.02.004. PubMed DOI
Varadhachary GR, Tamm EP, Abbruzzese JL, Xiong HQ, Crane CH, Wang H, Lee JE, Pisters PWT, Evans DB, Wolff RA. Borderline resectable pancreatic cancer: definitions, management, and role of preoperative therapy. Ann Surg Oncol. 2006;13(8):1035–46. 10.1245/ASO.2006.08.011. PubMed DOI
Garajová I, Peroni M, Gelsomino F, Leonardi FA. Simple overview of pancreatic Cancer treatment for clinical oncologists. Curr Oncol. 2023;30(11):9587–601. 10.3390/curroncol30110694. PubMed DOI PMC
Halbrook CJ, Lyssiotis CA, Magliano MP di;, Maitra A. Pancreatic Cancer: Advances and Challenges. PubMed PMC
Krishna V, Tiu E, Krishna V, Vrabac D, Shah K, Abuzeid W, Smith K, Davelaar J, Nuesca C, Larson BK, Fountzilas C, Rajpurkar P, Hendifar AE, Collisson EA, Joshi A, Singhi AD. Development of artificial Intelligence–Derived histological biomarkers for First-Line treatment selection in metastatic pancreatic ductal adenocarcinoma (mPDAC). J Clin Oncol. 2023;41(4suppl):743–743. 10.1200/JCO.2023.41.4_suppl.743. DOI
Elbanna KY, Jang H-J, Kim TK. Imaging diagnosis and staging of pancreatic ductal adenocarcinoma: A comprehensive review. Insights Imaging. 2020;11:58. 10.1186/s13244-020-00861-y. PubMed DOI PMC
Park J, Lim F, Prest M, Ferris JS, Aziz Z, Agyekum A, Wagner S, Gulati R, Hur C. Quantifying the potential benefits of early detection for pancreatic Cancer through a counterfactual simulation modeling analysis. Sci Rep. 2023;13(1):20028. 10.1038/s41598-023-46751-3. PubMed DOI PMC
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, Guo J. Artificial intelligence in pancreatic Cancer. Theranostics. 2022;12(16):6931–54. 10.7150/thno.77949. PubMed DOI PMC
Liu W, Zhang B, Liu T, Jiang J, Liu Y. Artificial intelligence in pancreatic image analysis: A review. Sensors. 2024;24(14):4749. 10.3390/s24144749. PubMed DOI PMC
Hameed BS, Krishnan UM. Artificial Intelligence-Driven diagnosis of pancreatic Cancer. Cancers. 2022;14(21):5382. 10.3390/cancers14215382. PubMed DOI PMC
Schuurmans M, Alves N, Vendittelli P, Huisman H, Hermans J. Setting the research agenda for clinical artificial intelligence in pancreatic adenocarcinoma imaging. Cancers. 2022;14(14):3498. 10.3390/cancers14143498. PubMed DOI PMC
Daher H, Punchayil SA, Ismail AAE, Fernandes RR, Jacob J, Algazzar MH, Mansour M. Advancements in pancreatic Cancer detection: integrating biomarkers, imaging technologies, and machine learning for early diagnosis. Cureus PubMed PMC
Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23(1):40–55. 10.1038/s41580-021-00407-0. PubMed DOI
LeCun Y, Bengio Y, Hinton G, Deep Learning. Nature. 2015;521(7553):436–44. 10.1038/nature14539. PubMed DOI
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. 10.1038/s41591-018-0316-z. PubMed DOI
Liu J, Fu F. Convolutional neural network model by deep learning and teaching robot in keyboard musical instrument teaching. PLoS ONE. 2023;18(10):e0293411. 10.1371/journal.pone.0293411. PubMed DOI PMC
Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inf. 2016;7(1):29. 10.4103/2153-3539.186902. PubMed DOI PMC
Cao K, Xia Y, Yao J, Han X, Lambert L, Zhang T, Tang W, Jin G, Jiang H, Fang X, Nogues I, Li X, Guo W, Wang Y, Fang W, Qiu M, Hou Y, Kovarnik T, Vocka M, Lu Y, Chen Y, Chen X, Liu Z, Zhou J, Xie C, Zhang R, Lu H, Hager GD, Yuille AL, Lu L, Shao C, Shi Y, Zhang Q, Liang T, Zhang L, Lu J. Large-Scale pancreatic Cancer detection via Non-Contrast CT and deep learning. Nat Med. 2023;29(12):3033–43. 10.1038/s41591-023-02640-w. PubMed DOI PMC
Placido D, Yuan B, Hjaltelin JX, Zheng C, Haue AD, Chmura PJ, Yuan C, Kim J, Umeton R, Antell G, Chowdhury A, Franz A, Brais L, Andrews E, Marks DS, Regev A, Ayandeh S, Brophy MT, Do NV, Kraft P, Wolpin BM, Rosenthal MH, Fillmore NR, Brunak S, Sander C. A deep learning algorithm to predict risk of pancreatic Cancer from disease trajectories. Nat Med. 2023;29(5):1113–22. 10.1038/s41591-023-02332-5. PubMed DOI PMC
Fu H, Mi W, Pan B, Guo Y, Li J, Xu R, Zheng J, Zou C, Zhang T, Liang Z, Zou J, Zou H. Automatic pancreatic ductal adenocarcinoma detection in whole slide images using deep convolutional neural networks. Front Oncol. 2021;11:665929. 10.3389/fonc.2021.665929. PubMed DOI PMC
Naito Y, Tsuneki M, Fukushima N, Koga Y, Higashi M, Notohara K, Aishima S, Ohike N, Tajiri T, Yamaguchi H, Fukumura Y, Kojima M, Hirabayashi K, Hamada Y, Norose T, Kai K, Omori Y, Sukeda A, Noguchi H, Uchino K, Itakura J, Okabe Y, Yamada Y, Akiba J, Kanavati F, Oda Y, Furukawa T, Yano H. A deep learning model to detect pancreatic ductal adenocarcinoma on endoscopic Ultrasound-Guided Fine-Needle biopsy. Sci Rep. 2021;11(1):8454. 10.1038/s41598-021-87748-0. PubMed DOI PMC
Kriegsmann M, Kriegsmann K, Steinbuss G, Zgorzelski C, Kraft A, Gaida MM. Deep learning in pancreatic tissue: identification of anatomical structures, pancreatic intraepithelial neoplasia, and ductal adenocarcinoma. Int J Mol Sci. 2021;22(10):5385. 10.3390/ijms22105385. PubMed DOI PMC
Janssen BV, Oteman B, Ali M, Valkema PA, Adsay V, Basturk O, Chatterjee D, Chou A, Crobach S, Doukas M, Drillenburg P, Esposito I, Gill AJ, Hong S-M, Jansen C, Kliffen M, Mittal A, Samra J, van Velthuysen M-LF, Yavas A, Kazemier G, Verheij J, Steyerberg E, Besselink MG, Wang H, Verbeke C, Fariña A, de Boer OJ, Pathologists. (ISGPP), for the I. S. G. of P.; consortium, the P. and H. A. I. R. (PHAIR); pathologists (ISGPP), for the I. S. G. of P.; consortium, the P. and H. A. I. R. (PHAIR). Artificial Intelligence-Based segmentation of residual pancreatic Cancer in resection specimens following neoadjuvant treatment (ISGPP-2): international improvement and validation study. Am J Surg Pathol. 2024;48(9):1108. 10.1097/PAS.0000000000002270. PubMed DOI PMC
Sehmi MNM, Fauzi MFA, Ahmad WSHMW, Chan EWL. Pancreatic Cancer grading in pathological images using deep learning convolutional neural networks. F1000Research October 18, 2021. 10.12688/f1000research.73161.1 PubMed PMC
Ghoshal B, Ghoshal B, Tucker A. Leveraging uncertainty in deep learning for pancreatic adenocarcinoma grading. In: Yang G, Aviles-Rivero A, Roberts M, Schönlieb C-B, editors. Medical image Understanding and analysis. Springer International Publishing: Cham,; 2022. pp. 565–77. 10.1007/978-3-031-12053-4_42.
Ahmadvand P, Farahani H, Farnell D, Darbandsari A, Topham J, Karasinska J, Nelson J, Naso J, Jones SJM, Renouf D, Schaeffer DF, Bashashati A. A deep learning approach for the identification of the molecular subtypes of pancreatic ductal adenocarcinoma based on whole slide pathology images. Am J Pathol. 2024;194(12):2302–12. 10.1016/j.ajpath.2024.08.006. PubMed DOI
Wilmink JW, Besselink MG, Brosens LAA, Wang H, Verbeke CS, Verheij J. Amsterdam international consensus meeting: tumor response scoring in the pathology assessment of resected pancreatic Cancer after neoadjuvant therapy. Mod Pathol. 2021;34(1):4–12. 10.1038/s41379-020-00683-9. VelthuysenM.-L. F.Basturk, O.; Campbell, F.; Doglioni, C.; Esposito, I.; Feakins, R.; Fukushima, N.; Gill, A. J.; Hruban, R. H.; Kaplan, J.; Koerkamp, B. G.; Hong, S.-M.; Krasinskas, A.; Luchini, C.; Offerhaus, J.; Sarasqueta, A. F.; Shi, C.; Singhi, A.; Stoop, T. F.; Soer, E. C.; Thompson, E.; Tienhoven, G. van. PubMed DOI
Fahrmann JF, Schmidt CM, Mao X, Irajizad E, Loftus M, Zhang J, Patel N, Vykoukal J, Dennison JB, Long JP, Do K-A, Zhang J, Chabot JA, Kluger MD, Kastrinos F, Brais L, Babic A, Jajoo K, Lee LS, Clancy TE, Ng K, Bullock A, Genkinger J, Yip-Schneider MT, Maitra A, Wolpin BM, Hanash S. Lead-Time trajectory of CA19-9 as an anchor marker for pancreatic Cancer early detection. Gastroenterology. 2021;160(4):1373–e13836. 10.1053/j.gastro.2020.11.052. PubMed DOI PMC
Poruk KE, Gay DZ, Brown K, Mulvihill JD, Boucher KM, Scaife CL, Firpo MA, Mulvihill SJ. The clinical utility of CA 19– 9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr Mol Med. 2013;13(3):340–51. 10.2174/1566524011313030003. PubMed DOI PMC
Majumder S, Taylor WR, Foote PH, Berger CK, Wu CW, Mahoney DW, Bamlet WR, Burger KN, Postier N, de la Fuente J, Doering KA, Lidgard GP, Allawi HT, Petersen GM, Chari ST, Ahlquist DA, Kisiel JB. High detection rates of pancreatic Cancer across stages by plasma assay of novel methylated DNA markers and CA19-9. Clin Cancer Res Off J Am Assoc Cancer Res. 2021;27(9):2523–32. 10.1158/1078-0432.CCR-20-0235. PubMed DOI PMC
Mahawan T, Luckett T, Mielgo Iza A, Pornputtapong N, Caamaño Gutiérrez E. Robust and consistent biomarker candidates identification by a machine learning approach applied to pancreatic ductal adenocarcinoma metastasis. BMC Med Inf Decis Mak. 2024;24(Suppl 4):175. 10.1186/s12911-024-02578-0. PubMed DOI PMC
Iwano T, Yoshimura K, Watanabe G, Saito R, Kiritani S, Kawaida H, Moriguchi T, Murata T, Ogata K, Ichikawa D, Arita J, Hasegawa K, Takeda S. High-Performance collective biomarker from liquid biopsy for diagnosis of pancreatic Cancer based on mass spectrometry and machine learning. J Cancer. 2021;12(24):7477–87. 10.7150/jca.63244. PubMed DOI PMC
Karar ME, El-Fishawy N, Radad M. Automated classification of urine biomarkers to diagnose pancreatic Cancer using 1-D convolutional neural networks. J Biol Eng. 2023;17:28. 10.1186/s13036-023-00340-0. PubMed DOI PMC
Athanasiou A, Kureshi N, Wittig A, Sterner M, Huber R, Palma NA, King T, Schiess R. Biomarker discovery for early detection of pancreatic ductal adenocarcinoma (PDAC) using multiplex proteomics technology. J Proteome Res. 2024;24(1):315–22. 10.1021/acs.jproteome.4c00752. PubMed DOI PMC
Firpo MA, Boucher KM, Bleicher J, Khanderao GD, Rosati A, Poruk KE, Kamal S, Marzullo L, De Marco M, Falco A, Genovese A, Adler JM, De Laurenzi V, Adler DG, Affolter KE, Garrido-Laguna I, Scaife CL, Turco MC, Mulvihill SJ. Multianalyte serum biomarker panel for early detection of pancreatic adenocarcinoma. JCO Clin Cancer Inf. 2023;7:e2200160. 10.1200/CCI.22.00160. PubMed DOI PMC
Lee J, Kang SW, Sim E-J, Bae J-S, Koo S, Byoun M, Kwon S, Hong S, Kim Y, Youn Y, Jung K, Kim J, Jeong HH, Kim J, Hwang J-H. Novel mRNA Biomarker-Based liquid biopsy for the detection of resectable pancreatic Cancer. BMC Cancer. 2025;25:762. 10.1186/s12885-025-14124-w. PubMed DOI PMC
Yu S, Li Y, Liao Z, Wang Z, Wang Z, Li Y, Qian L, Zhao J, Zong H, Kang B, Zou W-B, Chen K, He X, Meng Z, Chen Z, Huang S, Wang P. Plasma extracellular vesicle long RNA profiling identifies a diagnostic signature for the detection of pancreatic ductal adenocarcinoma. 2020. 10.1136/gutjnl-2019-318860 PubMed
Chen Y, Nian F, Chen J, Jiang Q, Yuan T, Feng H, Shen X, Dong L. Metagenomic microbial signatures for noninvasive detection of pancreatic Cancer. Biomedicines. 2025;13(4):1000. 10.3390/biomedicines13041000. PubMed DOI PMC
Wolrab D, Jirásko R, Cífková E, Höring M, Mei D, Chocholoušková M, Peterka O, Idkowiak J, Hrnčiarová T, Kuchař L, Ahrends R, Brumarová R, Friedecký D, Vivo-Truyols G, Škrha P, Škrha J, Kučera R, Melichar B, Liebisch G, Burkhardt R, Wenk MR, Cazenave-Gassiot A, Karásek P, Novotný I, Greplová K, Hrstka R, Holčapek M. Lipidomic profiling of human serum enables detection of pancreatic Cancer. Nat Commun. 2022;13(1):124. 10.1038/s41467-021-27765-9. PubMed DOI PMC
Chen RJ, Lu MY, Williamson DFK, Chen TY, Lipkova J, Noor Z, Shaban M, Shady M, Williams M, Joo B, Mahmood F. Pan-Cancer integrative Histology-Genomic analysis via multimodal deep learning. Cancer Cell. 2022;40(8):865–e8786. 10.1016/j.ccell.2022.07.004. PubMed DOI PMC
Hou J, Jia X, Xie Y, Qin W. Integrative Histology-Genomic analysis predicts hepatocellular carcinoma prognosis using deep learning. Genes. 2022;13(10):1770. 10.3390/genes13101770. PubMed DOI PMC
Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velázquez Vega JE, Brat DJ, Cooper L. A. D. Predicting Cancer Outcomes from Histology and Genomics Using Convolutional Networks. PubMed PMC
Höhn J, Krieghoff-Henning E, Jutzi TB, Kalle C. Combining CNN-Based histologic whole slide image analysis and patient data to improve skin Cancer classification. Eur J Cancer. 2021;149:94–101. 10.1016/j.ejca.2021.02.032. UtikalJ. S.Meier, F.; Gellrich, F. F.; Hobelsberger, S.; Hauschild, A.; Schlager, J. G.; French, L.; Heinzerling, L.; Schlaak, M.; Ghoreschi, K.; Hilke, F. J.; Poch, G.; Kutzner, H.; Heppt, M. V.; Haferkamp, S.; Sondermann, W.; Schadendorf, D.; Schilling, B.; Goebeler, M.; Hekler, A.; Fröhling, S.; Lipka, D. B.; Kather, J. N.; Krahl, D.; Ferrara, G.; Haggenmüller, S.; Brinker, T. J. PubMed DOI
Jabbar HK, Khan RZ. Methods to avoid Over-Fitting and Under-Fitting in supervised machine learning (Comparative Study). Computer science, communication and instrumentation devices. Research Publishing Services; 2014. pp. 163–72. 10.3850/978-981-09-5247-1_017.
Ying X. An overview of overfitting and its solutions. J Phys Conf Ser. 2019;1168:022022. 10.1088/1742-6596/1168/2/022022. DOI
Komura D, Ishikawa S. Machine learning methods for histopathological image analysis. Comput Struct Biotechnol J. 2018;16:34–42. 10.1016/j.csbj.2018.01.001. PubMed DOI PMC
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems. Volume 25. Curran Associates, Inc.; 2012.
Srinidhi CL, Ciga O, Martel AL. Deep neural network models for computational histopathology: A survey. Med Image Anal. 2021;67:101813. 10.1016/j.media.2020.101813. PubMed DOI PMC
He K, Girshick R, Dollár PR. ImageNet Pre-Training. arXiv November 21, 2018. 10.48550/arXiv.1811.08883
Litjens G, Bandi P, Ehteshami Bejnordi B, Geessink O, Balkenhol M, Bult P, Halilovic A, Hermsen M, van de Loo R, Vogels R, Manson QF, Stathonikos N, Baidoshvili A, van Diest P, Wauters C, van Dijk M, van der Laak J. 1399 H&E-Stained Sentinel lymph node sections of breast Cancer patients: the CAMELYON dataset. GigaScience. 2018;7(6):giy065. 10.1093/gigascience/giy065. PubMed DOI PMC
Aresta G, Araújo T, Kwok S, Chennamsetty SS, Safwan M, Alex V, Marami B, Prastawa M, Chan M, Donovan M, Fernandez G, Zeineh J, Kohl M, Walz C, Ludwig F, Braunewell S, Baust M, Vu QD, To MNN, Kim E, Kwak JT, Galal S, Sanchez-Freire V, Brancati N, Frucci M, Riccio D, Wang Y, Sun L, Ma K, Fang J, Kone I, Boulmane L, Campilho A, Eloy C, Polónia A, Aguiar PBACH. Grand challenge on breast Cancer histology images. Med Image Anal. 2019;56:122–39. 10.1016/j.media.2019.05.010. PubMed DOI
Bulten W, Kartasalo K, Chen P-HC, Ström P, Pinckaers H, Nagpal K, Cai Y, Steiner DF, van Boven H, Vink R, Hulsbergen-van de Kaa C, van der Laak J, Amin MB, Evans AJ, van der Kwast T, Allan R, Humphrey PA, Grönberg H, Samaratunga H, Delahunt B, Tsuzuki T, Häkkinen T, Egevad L, Demkin M, Dane S, Tan F, Valkonen M, Corrado GS, Peng L, Mermel CH, Ruusuvuori P, Litjens G, Eklund M. PANDA challenge consortium. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nat Med. 2022;28(1):154–63. 10.1038/s41591-021-01620-2. PubMed DOI PMC
Babaie M, Kalra S, Sriram A, Mitcheltree C, Zhu S, Khatami A, Rahnamayan S, Tizhoosh HR. Classification and retrieval of digital pathology scans. A New Dataset; 2017. pp. 8–16.
Schuurmans M, Alves N, Vendittelli P, Huisman H, Hermans J, Litjens G, Chang D, Verbeke C, Malats N, Löhr M. Artificial intelligence in pancreatic ductal adenocarcinoma imaging: A commentary on potential future applications. Gastroenterology. 2023;165(2):309–16. 10.1053/j.gastro.2023.04.003. PubMed DOI
Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, Cooc J, Weinkle J, Kim GE, Jakkula L, Feiler HS, Ko AH, Olshen AB, Danenberg KL, Tempero MA, Spellman PT, Hanahan D, Gray JW. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17(4):500–3. 10.1038/nm.2344. PubMed DOI PMC
Carrillo-Perez F, Ortuno FM, Börjesson A, Rojas I, Herrera LJ. Performance comparison between Multi-Center histopathology datasets of a Weakly-Supervised deep learning model for pancreatic ductal adenocarcinoma detection. Cancer Imaging. 2023;23:66. 10.1186/s40644-023-00586-3. PubMed DOI PMC
Pečinka L, Moráň L, Kovačovicová P, Meloni F, Havel J, Pivetta T, Vaňhara P. Intact cell mass spectrometry coupled with machine learning reveals minute changes induced by single gene Silencing. Heliyon. 2024;10(9):e29936. 10.1016/j.heliyon.2024.e29936. PubMed DOI PMC
Li X, Plataniotis KN. A complete color normalization approach to histopathology images using color cues computed from Saturation-Weighted statistics. IEEE Trans Biomed Eng. 2015;62(7):1862–73. 10.1109/TBME.2015.2405791. PubMed DOI
Monaco J, Hipp J, Lucas D, Smith S, Balis U, Madabhushi A. Image segmentation with implicit color standardization using spatially constrained expectation maximization: detection of nuclei. In: Ayache N, Delingette H, Golland P, Mori K, editors. PubMed
Linmans J, Laak J. van der; Litjens, G. Efficient Out-of-Distribution Detection in Digital Pathology Using Multi-Head Convolutional Neural Networks. In
Pawlowski N, Bhooshan S, Ballas N, Ciompi F, Glocker B, Drozdzal M. Needles in haystacks: on classifying tiny objects in large images. ArXiv January. 2020;6. 10.48550/arXiv.1908.06037.
Baxi V, Edwards R, Montalto M, Saha S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod Pathol. 2022;35(1):23–32. 10.1038/s41379-021-00919-2. PubMed DOI PMC
Felländer-Tsai LAI, Ethics. Accountability, and sustainability: revisiting the hippocratic oath. Acta Orthop. 2019;91(1):1–2. 10.1080/17453674.2019.1682850. PubMed DOI PMC
Shreve JT, Khanani SA, Haddad TC. Artificial intelligence in oncology: current capabilities, future opportunities, and ethical considerations. Am Soc Clin Oncol Educ Book 2022, 42, 842–51. 10.1200/EDBK_350652 PubMed
Kiener M. Artificial intelligence in medicine and the disclosure of risks. AI Soc. 2021;36(3):705–13. 10.1007/s00146-020-01085-w. PubMed DOI PMC
Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM, Rashidi P, Upchurch GR, Bihorac J. Artificial intelligence and surgical Decision-Making. JAMA Surg. 2020;155(2):148–58. 10.1001/jamasurg.2019.4917. PubMed DOI PMC
Abdullah YI, Schuman JS, Shabsigh R, Caplan A, Al-Aswad LA. Ethics of artificial intelligence in medicine and ophthalmology. Asia-Pac J Ophthalmol. 2021;10(3):289–98. 10.1097/APO.0000000000000397. PubMed DOI PMC