Dosage Optimisation of Trimethoprim and Sulfamethoxazole for the Treatment of an Avian Pathogenic Strain of Escherichia coli in Broiler Chickens

. 2023 Dec 20 ; 13 (1) : . [epub] 20231220

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38275321

Grantová podpora
QK1910057, RO0523 Ministry of Agriculture

Based on pharmacokinetic studies carried out according to the methodologies defined by the European Medicines Agency (EMA) using mass spectrometry analysis, a new formulation of a veterinary drug for the treatment of broiler chickens is proposed. Currently, the traditional trimethoprim-sulfamethoxazole drug used for broilers is applied in a 1:5 ratio, and the recommended dose is 45 mg kg-1 of live weight administered at 24 h intervals for 3 to 5 days. In this study, we propose a novel combination containing similar active substances in a newly established ratio of 1:4, with a recommended dosage of 20 mg kg-1 of live weight administered at 24 h intervals for 3 to 5 days. With this method, the currently recommended dose of the traditional trimethoprim-sulfamethoxazole drug used for broilers can be reduced by more than half. The efficacy of the newly designed formulation and dosage of the drug was verified in a bioassay for the treatment of broilers experimentally infected with an avian pathogenic strain of Escherichia coli. In the experiment, we compared the newly designed dosage with the traditional dosage in terms of efficacy and dosage. There were no statistically significant differences between the two drugs in efficacy regarding the survival of chickens after experimental infection or changes in their health status. The experimental results suggest that a significant reduction in the recommended daily dose of drugs containing trimethoprim and sulfamethoxazole for the treatment of bacterial infections in broilers is possible and can support the prudent use of antimicrobials, including the limitation of their overuse.

Zobrazit více v PubMed

Nolan L.K., Barnes H.J., Vaillancourt J.P., Abdul-Aziz T., Logue C.M. Colibacillosis. In: Swayne D.E., Glisson J.R., McDouglas L.R., Nolan L.K., Suarez D.L., Nair V.L., editors. Diseases of Poultry. 13th ed. Blackwell Publishing; Ames, IA, USA: 2013. pp. 751–805.

Sargeant J., Bergevin M., Churchill K., Dawkins K., Deb B., Dunn J., Logue C.M., Novy A., O’Connor A.M., Reist M., et al. The efficacy of antibiotics to control collibacillosis in broiler poultry: A systematic review. Anim. Health Res. Rev. 2019;20:263–273. doi: 10.1017/S1466252319000264. PubMed DOI

Barnes H.J., Nolan J., Vaillancourt J.P. Collibacillosis. In: Saif I.M., Fadly A.A., Glisson J.R., McDougald L.R., Nolan L., Swayne D.E., editors. Diseases in Poultry. 12th ed. Blackwell Publishing; Ames, IA, USA: 2008. pp. 691–732.

Nhung N.T., Chansiripornchai N., Carrique-Mas J.J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 2017;4:126. doi: 10.3389/fvets.2017.00126. PubMed DOI PMC

Jacobs M.R. Optimisation of antimicrobial therapy using pharmacokinetics and pharmacodynamics parameters. Clin. Microbiol. Inf. Dis. 2001;7:589–596. doi: 10.1046/j.1198-743x.2001.00295.x. PubMed DOI

Persoons D., Dewulf J., Smet A., Herman L., Heyndrickx M., Martel A., Catry B., Butaye P., Haesebrouck F. Antimicrobial use in belgian broiler production. Prev. Vet. Med. 2012;105:320–325. doi: 10.1016/j.prevetmed.2012.02.020. PubMed DOI

Joosten P., Sarrazin S., Van Gompel L., Luiken R.E.C., Mevius D.J., Wagenaar J.A., Heedrik D.J.J., Dewulf J., EFFORD Consortium Quantitative and qualitative analysis of antimicrobial usage at farm and flock level on 181 broiler farms in nine european countries. J. Antimicrob. Chemother. 2019;74:798–806. doi: 10.1093/jac/dky498. PubMed DOI

European Medicines Agency Categorisation of Antibiotics Used in Animals Promotes Responsible Use to Protect Public and Animal Health. [(accessed on 10 November 2023)]; Available online: https://www.ema.europa.eu/en/news/categorisation-antibiotics-used-animals-promotes-responsible-use-protect-public-animal-health.

Goetting V., Lee K.A., Tell L.A. Pharmacokinetics of veterinary drugs in laying hens and residue in eggs: A review of the literature. J. Vet. Pharmacol. Ther. 2011;34:521–556. doi: 10.1111/j.1365-2885.2011.01287.x. PubMed DOI

Baert K., De Baere S., Croubels S., De Backer P. Pharmacokinetics and oral bioavailability of sulfadiazine and trimethoprim in broiler chickens. Vet. Res. Commun. 2003;27:301–309. doi: 10.1023/A:1024084108803. PubMed DOI

Sumano H., Hernandez L., Gutierrez L., Bernad-Bernad M.J. Sustained availability of trimethoprim in drinking water to achive higher plasma sulphonamide-trimethoprim antibacterial activity in broilers. Br. Poult. Sci. 2005;46:114–118. doi: 10.1080/00071660400023946. PubMed DOI

Putecova K., Nedbalcova K., Bartejsova I., Zouharova M., Matiaskova K., Jeklova E., Viskova M., Zouzelkova P., Jerabek M., Stastny K. Experimental determination of the pharmacokinetic properties of trimethoprim and sulfamethoxazole combination in the blood serum of broiler chickens. Vet. Med. Czech. 2021;66:246–256. doi: 10.17221/190/2020-VETMED. DOI

European Committee on Antimicrobial Susceptibility Testing Clinical Breakpoints—Breakpoints and Guidance. [(accessed on 10 November 2023)]. Available online: https://eucast.org/clinical_breakpoints/

Harisberger M., Gobeli S., Hoop R., Dewulf J., Perretten V., Regula G. Antimicrobial resistance in Swiss laying hens, prevalence and risk factors. Zoonoses Public Health. 2011;58:377–387. doi: 10.1111/j.1863-2378.2010.01376.x. PubMed DOI

Sgariglia E., Mandolini N.A., Napoleoni M., Medici L., Fraticelli R., Conquista M., Gianfelici P., Staffolani M., Fisichella S., Capucella M., et al. Antibiotic resistance pattern and virulence genes in avian pathogenic Escherichia coli (APEC) from different breeding systems. Vet. Ital. 2019;55:27–33. PubMed

Roth N., Käsbohrer A., Mayrhofer S., Zitz U., Hofacre C., Domig K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019;98:1791–1804. doi: 10.3382/ps/pey539. PubMed DOI PMC

Wormser G.P., Keusch G.T., Heel R.C. Co-trimoxazole: Trimethoprim–sulfamethoxazole. Drugs. 1982;24:459–518. doi: 10.2165/00003495-198224060-00002. PubMed DOI

Johnson T.J., Wannemuehler Y., Doetkott C., Johnson S.J., Rosenberger S.C., Nolan L.K. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J. Clin. Microbiol. 2008;46:3987–3996. doi: 10.1128/JCM.00816-08. PubMed DOI PMC

Bower C.K., Daeschel M.A. Resistance responses of microorganisms in food environments. Int. J. Food Microbiol. 1999;50:33–44. doi: 10.1016/S0168-1605(99)00075-6. PubMed DOI

Oosterik L.H., Peeters L., Mutuku I., Goddeeris B.M., Butaye P. Susceptibility of avian pathogenic Escherichia coli from laying hens in Belgium to antibiotics and disinfectants and integron prevalence. Avian Dis. 2014;58:271–278. doi: 10.1637/10680-100113-RegR. PubMed DOI

Peterson I.K., Hoyle A., Ochoa G., Baker-Austin C., Taylor N.G.H. Optimising antibiotic usage to treat bacterial infections. Sci. Rep. 2016;6:37853. doi: 10.1038/srep37853. PubMed DOI PMC

Aliabadi F.S., Lees P. Antibiotic treatment for animals: Effect on bacterial population and dosage regimen optinalisation. Int. J. Antimicrob. Agents. 2000;14:307–313. doi: 10.1016/S0924-8579(00)00142-4. PubMed DOI

Goranova M., Ochoa G., Maier P., Hayle A. Evolutionary optimalisation of antibiotic dosing regiments for bacteria with different levels of resistance. Artif. Intell. Med. 2022;133:102405. doi: 10.1016/j.artmed.2022.102405. PubMed DOI

World Health Organisation One Health. [(accessed on 10 November 2023)];2017 Available online: https://www.who.int/news-room/questions-and-answers/item/one-health.

Mulchandani R., Wang Y., Gilbert M., Van Boeckel T.P. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Glob. Public Health. 2023;3:e0001305. doi: 10.1371/journal.pgph.0001305. PubMed DOI PMC

European Union Regulations; Brussels, Belgium: 2019. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC; pp. L4–L43.

Eliakim-Raz N., Hellerman M., Yahav D., Cohen J., Margalit I., Fisher S., Zusman O., Shaked H., Bishara J. Trimethoprim/sulfamethoxazole versus vancomycin in the treatment of healthcare/ventilator-associated MRSA pneumonia: A case-control study. J. Antimicrob. Chemother. 2017;72:882–887. PubMed

Queralt J., Castells I. Pharmacokinetics of sulfamethoxazole and trimethoprim association in hens. Poult. Sci. 1985;64:2362–2367. doi: 10.3382/ps.0642362. PubMed DOI

Craig W.A., Andes D. Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr. Infect. Dis. J. 1996;15:255–259. doi: 10.1097/00006454-199603000-00015. PubMed DOI

Haddad N., Carr M., Balian S., Lannin J., Kim Y., Toth C., Jarvis J. The blood–brain barrier and pharmacokinetic/pharmacodynamic optimization of antibiotics for the treatment of central nervous system infections in adults. Antibiotics. 2022;11:1843. doi: 10.3390/antibiotics11121843. PubMed DOI PMC

Lewis E.L., Anderson J.D., Lacey R.W. A reappraisal of the antibacterial action of cotrimoxazole in vitro. J. Clin. Pathol. 1974;27:87–91. doi: 10.1136/jcp.27.2.87. PubMed DOI PMC

European Medicines Agency Methoxasol-t—Article 34 Referral—Annex I, II, III. Ref. No. CVMP/458933/08. EC Decision Date 11/01/2008. 2008. [(accessed on 30 November 2023)]; Available online: https://www.ema.europa.eu/en/medicines/veterinary/referrals/methoxasol-t#overview-section.

State Veterinary Administration Narodni Antibioticky Program. [(accessed on 5 December 2023)]. Available online: https://www.svscr.cz/zdravi-zvirat/narodni-antibioticky-program/

Gray P., Jenner R., Norris J., Page S., Browning G., Australian Veterinary Association Ltd. Animal Medicines Australia Antimicrobial prescribing guidelines for poultry. Aust. Vet. J. 2021;99:181–235. doi: 10.1111/avj.13034. PubMed DOI PMC

European Medicines Agency EMEA/CVMP/VICH/591/98 VICH GL 2—Validation of Analytical Procedures: Methodology. [(accessed on 10 November 2023)]; Available online: https://www.ema.europa.eu/en/vich-gl2-validation-analytical-procedures-methodology-scientific-guideline.

European Medicines Agency EMEA/CVMP/VICH/463202/2009 VICH GL 49—Studies to Evaluate the Metabolism and Residue Kinetics of Veterinary Drugs in Food-Producing Animals: Validation of Analytical Methods Used in Residue Depletion Studies. [(accessed on 10 November 2023)]; Available online: https://www.ema.europa.eu/en/vich-gl49-studies-evaluate-metabolism-residue-kinetics-veterinary-drugs-food-producing-animals.

European Medicines Agency EMEA/CVMP/EWP/133/1999—Final 2000—Guideline on Conduct of Pharmacokinetic Studies in Target Animal Species. [(accessed on 10 November 2023)]; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guidelines-conduct-pharmacokinetic-studies-target-animal-species_en.pdf.

Clinical Laboratory Standards Institute . VET01S Performance Standards for Antimicrobial Susceptibility Tests for Bacteria Isolated from Animals; CLSI Supplement. 5th ed. Clinical Laboratory Standards Institute; Wayne, PA, USA: 2020. pp. 1–216.

Clinical Laboratory Standards Institute . VET01-A4 Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard. 4th ed. Clinical Laboratory Standards Institute; Wayne, PA, USA: 2013. pp. 1–73.

Schwarz S., Silley P., Simjee S., Woodford N., van Duijkeren E., Johnson A.P., Gaastra W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet. Microbiol. 2010;141:601–604. doi: 10.1016/j.vetmic.2009.12.013. PubMed DOI

Nedbalcova K., Bzdil J., Papouskova A., Zouharova M., Matiaskova K., Stastny K., Sladecek V., Senk D., Matej P., Stoalr P. Pathotypes and phenotypic resistance of antimicrobials of Eswcherichia coli isolates from one-day-old chickens. Pathogens. 2023;12:1330. doi: 10.3390/pathogens12111330. PubMed DOI PMC

Ross Broiler Management Handbook Aviagen. 2018. [(accessed on 10 November 2023)]. Available online: https://aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerHandbook2018-EN.pdf.

Ewers C., Janssen T., Kiessling S., Philipp H.C., Wieler L.H. Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Dis. 2005;49:269–273. doi: 10.1637/7293-102604R. PubMed DOI

Dissanayake D.R., Octavia S., Lan R. Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka. Vet. Microbiol. 2014;168:403–412. doi: 10.1016/j.vetmic.2013.11.028. PubMed DOI

Papouskova A., Masarikova M., Valcek A., Senk D., Cejkova D., Jahodarova E., Cizek A. Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic. BMC Vet. Res. 2020;16:189. doi: 10.1186/s12917-020-02407-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...