Pathotypes and Phenotypic Resistance to Antimicrobials of Escherichia coli Isolates from One-Day-Old Chickens

. 2023 Nov 08 ; 12 (11) : . [epub] 20231108

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38003794

Grantová podpora
QK1910057, RO0523 Ministry of Agriculture

The aim of this work was to describe the pathotypes of Escherichia coli strains isolated from one-day-old chickens, as well as the occurrence of resistance and multidrug resistance (MDR) in these strains. A total of 429 mixed swabs from 4290 one-day-old chicks were examined between August 2021 and July 2023 (24 months) during routine point-of-destination inspections at 12 poultry farms in the Czech Republic. All samples were processed via cultivation methods using meat-peptone blood agar and Mc Conkey agar under aerobic conditions at 37 ± 1 °C for 18-24 h. The identification of the strains was performed using MALDI-TOF mass spectrometry. All confirmed strains of E. coli were screened via single or multiplex PCRs for the presence of genes encoding the virulence-associated factors iroN, cvaC, iss, felA, iutA, frz and tsh. Antimicrobial susceptibility tests were performed using the minimal inhibitory concentration (MIC) method, focusing on ampicillin, cefotaxime, tetracycline, doxycycline, enrofloxacin, florfenicol, amoxicillin with clavulanic acid and trimethoprim with sulfamethoxazole. A total of 321 E. coli strains (prevalence of 74.8%) were isolated, and 300 isolates were defined as avian pathogenic strains of E. coli (APEC) via multiplex PCR. Based on the defined virulence genes, the isolates were classified into 31 pathotypes. A total of 15.9% of the tested isolates were susceptible to all the tested antimicrobials. On the other hand, 20.5% of the isolates were identified as multidrug-resistant (8.7% of isolates were resistant to three antimicrobials, 7.3% to four antimicrobials, 3.6% to five antimicrobials and 0.9% to six antimicrobials). Monitoring pathogenic strains of E. coli in different animals and in the environment makes it possible to understand their spread in animal and human populations and, at the same time, reveal the sources of virulence and resistance genes.

Zobrazit více v PubMed

Barnes H.J., Nolan J., Vaillancourt J.P. Collibacillosis. In: Saif I.M., Fadly A.A., Glisson J.R., McDougald L.R., Nolan L., Swayne D.E., editors. Diseases in Poultry. 12th ed. Blackwell Publishing; Ames, IA, USA: 2008. pp. 691–732.

Gyles C.L. Antimicrobial resistance in selected bacteria from poultry. Anim. Health Res. Rev. 2008;9:149–158. doi: 10.1017/S1466252308001552. PubMed DOI

Dziva F., Stevens M.P. Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian. Pathol. 2008;37:355–366. doi: 10.1080/03079450802216652. PubMed DOI

Ewers C., Janssen T., Kiessling S., Philipp H.C., Wieler L.H. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet. Microbiol. 2004;104:91–101. doi: 10.1016/j.vetmic.2004.09.008. PubMed DOI

Ewers C., Janssen T., Kiessling S., Philipp H.C., Wieler L.H. Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian. Dis. 2005;49:269–273. doi: 10.1637/7293-102604R. PubMed DOI

Jeong Y.W., Kim T.E., Kim J.H., Kwon H.J. Pathotyping avian pathogenic Escherichia coli strains in Korea. J. Vet. Sci. 2012;13:145–152. doi: 10.4142/jvs.2012.13.2.145. PubMed DOI PMC

Johnson T.J., Wannemuehler Y., Doetkott C., Johnson S.J., Rosenberger S.C., Nolan L.K. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J. Clin. Microbiol. 2008;46:3987–3996. doi: 10.1128/JCM.00816-08. PubMed DOI PMC

Barberi N.L., De Oliveira A.L., Tejkowski T.M., Pavanelo D.B., Rocha D.A., Matter L.B., Callegari-Jacques S.M., De Brito B.G., Horn F. Genotypes and pathogenicity of cellulitis isolates reveal traits that modulate APEC virulence. PLoS ONE. 2013;8:e72322. doi: 10.1371/journal.pone.0072322. PubMed DOI PMC

Moulin-Schouleur M., Répérant M., Laurent S., Brée A., Mignon-Grasteau S., Germon P., Rasschaert D., Schouler C. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: Link between phylogenetic relationships and common virulence patterns. J. Clin. Microbiol. 2007;45:3366–3376. doi: 10.1128/JCM.00037-07. PubMed DOI PMC

Schouler C., Schaeffer B., Brée A., Mora A., Dahbi G., Biet F., Oswald E., Mainil J., Blanco J., Moulin-Schouleur M. Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. J. Clin. Microbiol. 2012;50:1673–1678. doi: 10.1128/JCM.05057-11. PubMed DOI PMC

Dissanayake D.R., Octavia S., Lan R. Population structure and virulence content of avian pathogenic Escherichia coli isolated from outbreaks in Sri Lanka. Vet. Microbiol. 2014;168:403–412. doi: 10.1016/j.vetmic.2013.11.028. PubMed DOI

Kobayashi R.K., Gaziri L.C., Vidotto M.C. Functional activities of the Tsh protein from avian pathogenic Escherichia coli (APEC) strains. J. Vet. Sci. 2010;11:315–319. doi: 10.4142/jvs.2010.11.4.315. PubMed DOI PMC

Rouquet G., Porcheron G., Barra C., Répérant M., Chanteloup N.K., Schouler C., Gilot P. A metabolic operon in extraintestinal pathogenic Escherichia coli promotes fitness under stressful conditions and invasion of eukaryotic cells. J. Bacteriol. 2009;191:4427–4440. doi: 10.1128/JB.00103-09. PubMed DOI PMC

Kariyawasam S., Wilkie B.N., Gyles C.L. Construction, characterization, and evaluation of the vaccine potential of three genetically defined mutants of avian pathogenic Escherichia coli. Avian. Dis. 2004;48:287–299. doi: 10.1637/7093. PubMed DOI

Nhung N.T., Chansiripornchai N., Carrique-Mas J.J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 2017;4:126. doi: 10.3389/fvets.2017.00126. PubMed DOI PMC

Joosten P., Sarrazin S., Van Gompel L., Luiken R.E.C., Mevius D.J., Wagenaar J.A., Heedrik D.J.J., Dewulf J., EFFORD Consortium Quantitative and qualitative analysis of antimicrobial usage at farm and flock level on 181 broiler farms in nine european countries. J. Antimicrob. Chemother. 2019;74:798–806. doi: 10.1093/jac/dky498. PubMed DOI

Persoons D., Dewulf J., Smet A., Herman L., Heyndrickx M., Martel A., Catry B., Butaye P., Haesebrouck F. Antimicrobial use in belgian broiler production. Prevent. Vet. Med. 2012;105:320–325. doi: 10.1016/j.prevetmed.2012.02.020. PubMed DOI

European Medicines Agency Categorisation of Antibiotics Used in Animals Promotes Responsible Use to Protect Public and Animal Health. [(accessed on 4 October 2023)]. Available online: https://www.ema.europa.eu/en/news/categorisation-antibiotics-used-animals-promotes-responsible-use-protect-public-animal-health.

Papouskova A., Masarikova M., Valcek A., Senk D., Cejkova D., Jahodarova E., Cizek A. Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic. BMC Vet. Res. 2020;16:189. doi: 10.1186/s12917-020-02407-2. PubMed DOI PMC

Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. Clinical Laboratory Standards Institute; Wayne, PA, USA: 2013. pp. 1–73. Approved Standard, 4th ed.

European Committee on Antimicrobial Susceptibility Testing Clinical Breakpoints—Breakpoints and Guidance. [(accessed on 18 August 2023)]. Available online: https://eucast.org/clinical_breakpoints/

Performance Standards for Antimicrobial Susceptibility Tests for Bacteria Isolated from Animals. Clinical Laboratory Standards Institute; Wayne, PA, USA: 2020. pp. 1–216. CLSI Supplement, 5th ed.

Harisberger M., Gobeli S., Hoop R., Dewulf J., Perreten V., Regula G. Antimicrobial resistance in Swiss laying hens, prevalence and risk factors. Zoonoses Pub. Health. 2011;58:377–387. doi: 10.1111/j.1863-2378.2010.01376.x. PubMed DOI

Sgariglia E., Mandolini N.A., Napoleoni M., Medici L., Fraticelli R., Conquista M., Gianfelici P., Staffolani M., Fisichella S., Capucella M., et al. Antibiotic resistance pattern and virulence genes in avian pathogenic Escherichia coli (APEC) from different breeding systems. Vet. Ital. 2019;55:27–33. PubMed

Bower C.K., Daeschel M.A. Resistance responses of microorganisms in food environments. Int. J. Food Microbiol. 1999;50:33–44. doi: 10.1016/S0168-1605(99)00075-6. PubMed DOI

Oosterik L.H., Peeters L., Mutuku I., Godderis B.M., Butaye P. Susceptibility of avian pathogenic Escherichia coli from laying hens in Belgium to antibiotics and disinfectants and integron prevalence. Avian. Dis. 2014;58:271–278. doi: 10.1637/10680-100113-RegR. PubMed DOI

Gross W.B. Colibacilosis. In: Hofstad M.S., Calneck B.W., Helmbod C.F., Reid W.M., Yoder H.W., editors. Diseases of Poultry, 9th ed. Iowa State University Press; Ames, IA, USA: 1991. pp. 270–278.

Maciel J.F., Matter L.B., Trindade M.M., Camillo G., Lovato M., Avila Botton S., Castagna de Vardas A. Virulence factors and antimicrobial susceptibility profile of extraintestinal Escherichia coli isolated from an avian colisepticemia outbreak. Microb. Pathog. 2017;103:119–122. doi: 10.1016/j.micpath.2016.12.020. PubMed DOI

Chen Y., Sun J., Liao X.P., Shao Y., Li L., Fang L.X., Liu Y.H. Impact of enrofloxacin and florfenicol therapy on the spread of OqxAB gene and intestinal microbiota in chickens. Vet. Microbiol. 2016;192:1–9. doi: 10.1016/j.vetmic.2016.05.014. PubMed DOI

Li J., Zhang H., Ning J., Sajid A., Cheng G., Yuan Z., Hao H. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob. Resist. Infect. Control. 2019;8:4. doi: 10.1186/s13756-019-0489-3. PubMed DOI PMC

Theobald S., Etter E.M.C., Gerber D., Abolnik C. Antimicrobial resistance trends in Escherichia coli in South African poultry: 2009–2015. Foodborne Path. Dis. 2019;16:652–660. doi: 10.1089/fpd.2018.2612. PubMed DOI

Kim S., Kim H., Kim Y., Kim M., Kwak H., Ryu S. Antimicrobial resistance of Escherichia coli from retail poultry meat in Korea. J. Food Protect. 2020;83:1673–1678. doi: 10.4315/JFP-20-150. PubMed DOI

Tang B., Ma Y., He X.X., Zhou Q.Y., Chang J., Qian M.R., Xia X.D., Yang H. Similar antimicrobial resistance of Escherichia coli strains isolated from retail chickens and poultry farms. Foodborne Path. Dis. 2021;18:489–496. doi: 10.1089/fpd.2021.0019. PubMed DOI

Riley L.W. Distinguishing pathovars from nonpathovars: Escherichia coli. Microbiol. Spectr. 2020;8:4. doi: 10.1128/microbiolspec.AME-0014-2020. PubMed DOI PMC

Mehat J.W., van Vliet A.H.M., La Ragione R.M. The avian pathogenic Escherichia coli (APEC) pathotype is comprised of multiple distinct, independent genotypes. Avian. Pathol. 2021;50:402–416. doi: 10.1080/03079457.2021.1915960. PubMed DOI

Christensen H., Bachmeier J., Bisgaard M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC) Avian. Pathol. 2021;50:370–381. doi: 10.1080/03079457.2020.1845300. PubMed DOI

Touchon M., Perrin A., de Sousa J.A.M., Vangchhia B., Burn S., O’Brien C.L., Denamur E., Gordon D., Rocha E.P. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genet. 2020;16:e1008866. doi: 10.1371/journal.pgen.1008866. PubMed DOI PMC

Bojesen A.M., Ahmed U., Skaarup H., Espinosa-Gongora C. Recurring outbreaks by the same Escherichia coli ST10 clone in a broiler unit during 18 months. Vet. Res. 2022;53:2. doi: 10.1186/s13567-021-01017-6. PubMed DOI PMC

Kravik I.H., Kaspersen H., Sjurseth S.K., Dean K.R., David B., Aspholm M., Sekse C. A molecular epidemiological study on Escherichia coli in young chicks with colibacillosis identified two possible outbreaks across farms. Vet. Res. 2023;54:10. doi: 10.1186/s13567-023-01140-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...