Cooperation between intrinsically disordered and ordered regions of Spt6 regulates nucleosome and Pol II CTD binding, and nucleosome assembly
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35640611
PubMed Central
PMC9177984
DOI
10.1093/nar/gkac451
PII: 6595227
Knihovny.cz E-zdroje
- MeSH
- elektronová kryomikroskopie MeSH
- genetická transkripce MeSH
- histonové chaperony genetika metabolismus MeSH
- nukleozomy * genetika metabolismus MeSH
- RNA-polymerasa II metabolismus MeSH
- Saccharomyces cerevisiae - proteiny * metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- transkripční elongační faktory metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histonové chaperony MeSH
- nukleozomy * MeSH
- RNA-polymerasa II MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- SPT6 protein, S cerevisiae MeSH Prohlížeč
- transkripční elongační faktory MeSH
Transcription elongation factor Spt6 associates with RNA polymerase II (Pol II) and acts as a histone chaperone, which promotes the reassembly of nucleosomes following the passage of Pol II. The precise mechanism of nucleosome reassembly mediated by Spt6 remains unclear. In this study, we used a hybrid approach combining cryo-electron microscopy and small-angle X-ray scattering to visualize the architecture of Spt6 from Saccharomyces cerevisiae. The reconstructed overall architecture of Spt6 reveals not only the core of Spt6, but also its flexible N- and C-termini, which are critical for Spt6's function. We found that the acidic N-terminal region of Spt6 prevents the binding of Spt6 not only to the Pol II CTD and Pol II CTD-linker, but also to pre-formed intact nucleosomes and nucleosomal DNA. The N-terminal region of Spt6 self-associates with the tSH2 domain and the core of Spt6 and thus controls binding to Pol II and nucleosomes. Furthermore, we found that Spt6 promotes the assembly of nucleosomes in vitro. These data indicate that the cooperation between the intrinsically disordered and structured regions of Spt6 regulates nucleosome and Pol II CTD binding, and also nucleosome assembly.
CEITEC Central European Institute of Technology Masaryk University Brno CZ 62500 Czech Republic
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Clark-Adams C.D., Winston F.. The SPT6 gene is essential for growth and is required for delta-mediated transcription in saccharomyces cerevisiae. Mol. Cell. Biol. 1987; 7:679–686. PubMed PMC
Endoh M., Zhu W., Hasegawa J., Watanabe H., Kim D.-K., Aida M., Inukai N., Narita T., Yamada T., Furuya A.et al. .. Human spt6 stimulates transcription elongation by RNA polymerase II in vitro. Mol. Cell. Biol. 2004; 24:3324–3336. PubMed PMC
Ardehali M.B., Yao J., Adelman K., Fuda N.J., Petesch S.J., Webb W.W., Lis J.T.. Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J. 2009; 28:1067–1077. PubMed PMC
Baniahmad C., Nawaz Z., Baniahmad A., Gleeson M.A.G., Tsai M.J., O’Malley B.W. Enhancement of human estrogen receptor activity by SPT6: a potential coactivator. Mol. Endocrinol. 1995; 9:34–43. PubMed
Yoh S.M., Cho H., Pickle L., Evans R.M., Jones K.A.. The spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev. 2007; 21:160–174. PubMed PMC
Adkins M.W., Tyler J.K.. Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions. Mol. Cell. 2006; 21:405–416. PubMed
Obara E.A.A., Aguilar-Morante D., Rasmussen R.D., Frias A., Vitting-Serup K., Lim Y.C., Elbæk K.J., Pedersen H., Vardouli L., Jensen K.E.et al. .. SPT6-driven error-free DNA repair safeguards genomic stability of glioblastoma cancer stem-like cells. Nat. Commun. 2020; 11:4709. PubMed PMC
Dronamraju R., Hepperla A.J., Shibata Y., Adams A.T., Magnuson T., Davis I.J., Strahl B.D.. Spt6 association with RNA polymerase II directs mRNA turnover during transcription. Mol. Cell. 2018; 70:1054–1066. PubMed PMC
Bobkov G.O.M., Huang A., van den Berg S.J.W., Mitra S., Anselm E., Lazou V., Schunter S., Feederle R., Imhof A., Lusser A.et al. .. Spt6 is a maintenance factor for centromeric CENP-A. Nat. Commun. 2020; 11:2919. PubMed PMC
Gopalakrishnan R., Marr S.K., Kingston R.E., Winston F.. A conserved genetic interaction between spt6 and set2 regulates H3K36 methylation. Nucleic Acids Res. 2019; 47:3888–3903. PubMed PMC
Youdell M.L., Kizer K.O., Kisseleva-Romanova E., Fuchs S.M., Duro E., Strahl B.D., Mellor J.. Roles for ctk1 and spt6 in regulating the different methylation states of histone H3 lysine 36. Mol. Cell. Biol. 2008; 28:4915–4926. PubMed PMC
DeGennaro C.M., Alver B.H., Marguerat S., Stepanova E., Davis C.P., Bahler J., Park P.J., Winston F.. Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol. Cell. Biol. 2013; 33:4779–4792. PubMed PMC
Doris S.M., Chuang J., Viktorovskaya O., Murawska M., Spatt D., Churchman L.S., Winston F.. Spt6 is required for the fidelity of promoter selection. Mol. Cell. 2018; 72:687–699. PubMed PMC
Jeronimo C., Poitras C., Robert F.. Histone recycling by FACT and spt6 during transcription prevents the scrambling of histone modifications. Cell Rep. 2019; 28:1206–1218. PubMed
Hainer S.J., Pruneski J.A., Mitchell R.D., Monteverde R.M., Martens J.A.. Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev. 2011; 25:29–40. PubMed PMC
Kaplan C.D., Laprade L., Winston F.. Transcription elongation factors repress transcription initiation from cryptic sites. Science. 2003; 301:1096–1099. PubMed
Mayer A., Lidschreiber M., Siebert M., Leike K., Söding J., Cramer P.. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 2010; 17:1272–1278. PubMed
Vos S.M., Farnung L., Boehning M., Wigge C., Linden A., Urlaub H., Cramer P.. Structure of activated transcription complex pol II–DSIF–PAF–SPT6. Nature. 2018; 560:607–612. PubMed
Close D., Johnson S.J., Sdano M.A., McDonald S.M., Robinson H., Formosa T., Hill C.P.. Crystal structures of the s. cerevisiae spt6 core and C-terminal tandem SH2 domain. J. Mol. Biol. 2011; 408:697–713. PubMed PMC
Vos S.M., Farnung L., Linden A., Urlaub H., Cramer P.. Structure of complete pol II–DSIF–PAF–SPT6 transcription complex reveals RTF1 allosteric activation. Nat. Struct. Mol. Biol. 2020; 27:668–677. PubMed
Sun M., Larivière L., Dengl S., Mayer A., Cramer P.. A tandem SH2 domain in transcription elongation factor spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD). J. Biol. Chem. 2010; 285:41597–41603. PubMed PMC
Sdano M.A., Fulcher J.M., Palani S., Chandrasekharan M.B., Parnell T.J., Whitby F.G., Formosa T., Hill C.P.. A novel SH2 recognition mechanism recruits spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription. Elife. 2017; 6:e28723. PubMed PMC
Brázda P., Krejčíková M., Kasiliauskaite A., Šmiřáková E., Klumpler T., Vácha R., Kubíček K., Štefl R.. Yeast spt6 reads multiple phosphorylation patterns of RNA polymerase II C-Terminal domain in vitro. J. Mol. Biol. 2020; 432:4092–4107. PubMed PMC
Bortvin A., Winston F.. Spt6p controls chromatin. Science. 1996; 272:473–477. PubMed
McCullough L., Connell Z., Petersen C., Formosa T.. The abundant histone chaperones spt6 and FACT collaborate to assemble, inspect, and maintain chromatin structure in saccharomyces cerevisiae. Genetics. 2015; 201:1030–1045. PubMed PMC
McDonald S.M., Close D., Xin H., Formosa T., Hill C.P.. Structure and biological importance of the spn1-spt6 interaction, and its regulatory role in nucleosome binding. Mol. Cell. 2010; 40:725–735. PubMed PMC
Klock H.E., Koesema E.J., Knuth M.W., Lesley S.A.. Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins Struct. Funct. Genet. 2008; 71:982–994. PubMed
Ivić N., Groschup B., Bilokapić S., Halić M.. Simplified method for rapid purification of soluble histones. Croat. Chem. Acta. 2016; 89:153–162.
Bilokapic S., Halic M.. Nucleosome and ubiquitin position set2 to methylate H3K36. Nat. Commun. 2019; 10:3795. PubMed PMC
Bilokapic S., Strauss M., Halic M.. Structural rearrangements of the histone octamer translocate DNA. Nat. Commun. 2018; 9:1330. PubMed PMC
Kubicek K., Cerna H., Holub P., Pasulka J., Hrossova D., Loehr F., Hofr C., Vanacova S., Stefl R.. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of nrdl. Genes Dev. 2012; 26:1891–1896. PubMed PMC
Mastronarde D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005; 152:36–51. PubMed
Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A.. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017; 14:331–332. PubMed PMC
Zhang K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016; 193:1–12. PubMed PMC
Tang G., Peng L., Baldwin P.R., Mann D.S., Jiang W., Rees I., Ludtke S.J.. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 2007; 157:38–46. PubMed
Wagner T., Merino F., Stabrin M., Moriya T., Antoni C., Apelbaum A., Hagel P., Sitsel O., Raisch T., Prumbaum D.et al. .. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019; 2:218. PubMed PMC
Zivanov J., Nakane T., Forsberg B.O., Kimanius D., Hagen W.J., Lindahl E., Scheres S.H.. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018; 7:e42166. PubMed PMC
Punjani A., Rubinstein J.L., Fleet D.J., Brubaker M.A.. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017; 14:290–296. PubMed
Emsley P., Lohkamp B., Scott W.G., Cowtan K.. Features and development of coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010; 66:486–501. PubMed PMC
Liebschner D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J.et al. .. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr. Sect. D Struct. Biol. 2019; 75:861–877. PubMed PMC
Croll T.I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. Sect. D Struct. Biol. 2018; 74:519–530. PubMed PMC
Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B.et al. .. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018; 27:293–315. PubMed PMC
Franke D., Petoukhov M.V., Konarev P.V., Panjkovich A., Tuukkanen A., Mertens H.D.T., Kikhney A.G., Hajizadeh N.R., Franklin J.M., Jeffries C.M.et al. .. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 2017; 50:1212–1225. PubMed PMC
Petoukhov M.V., Franke D., Shkumatov A.V., Tria G., Kikhney A.G., Gajda M., Gorba C., Mertens H.D.T., Konarev P.V., Svergun D.I.. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 2012; 45:342–350. PubMed PMC
Tria G., Mertens H.D.T., Kachala M., Svergun D.I.. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ. 2015; 2:207–217. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E.. UCSF chimerax: structure visualization for researchers, educators, and developers. Protein Sci. 2021; 30:70–82. PubMed PMC
Burugula B.B., Jeronimo C., Pathak R., Jones J.W., Robert F., Govind C.K.. Histone deacetylases and phosphorylated polymerase II C-Terminal domain recruit spt6 for cotranscriptional histone reassembly. Mol. Cell. Biol. 2014; 34:4115–4129. PubMed PMC
Mayer A., Heidemann M., Lidschreiber M., Schreieck A., Sun M., Hintermair C., Kremmer E., Eick D., Cramer P.. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science. 2012; 336:1723–1725. PubMed
Pardal A.J., Fernandes-Duarte F., Bowman A.J.. The histone chaperoning pathway: from ribosome to nucleosome. Essays Biochem. 2019; 63:29–43. PubMed PMC
Hammond C.M., Strømme C.B., Huang H., Patel D.J., Groth A.. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 2017; 18:141–158. PubMed PMC
Dyer P.N., Edayathumangalam R.S., White C.L., Bao Y., Chakravarthy S., Muthurajan U.M., Luger K.. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 2003; 375:23–44. PubMed
Muthurajan U., Mattiroli F., Bergeron S., Zhou K., Gu Y., Chakravarthy S., Dyer P., Irving T., Luger K.. In vitro chromatin assembly: strategies and quality control. Methods in Enzymology. 2016; 573:Academic Press Inc; 3–41. PubMed PMC
Orphanides G., LeRoy G., Chang C.H., Luse D.S., Reinberg D.. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell. 1998; 92:105–116. PubMed
Ivanovska I., Jacques P.-E., Rando O.J., Robert F., Winston F.. Control of chromatin structure by spt6: different consequences in coding and regulatory regions. Mol. Cell. Biol. 2011; 31:531–541. PubMed PMC
Warren C., Shechter D.. Fly fishing for histones: catch and release by histone chaperone intrinsically disordered regions and acidic stretches. J. Mol. Biol. 2017; 429:2401–2426. PubMed PMC
Liu Y., Zhou K., Zhang N., Wei H., Tan Y.Z., Zhang Z., Carragher B., Potter C.S., D’Arcy S., Luger K. FACT caught in the act of manipulating the nucleosome. Nature. 2019; 577:426–431. PubMed PMC
Zhou K., Liu Y., Luger K.. Histone chaperone FACT FAcilitates chromatin transcription: mechanistic and structural insights. Curr. Opin. Struct. Biol. 2020; 65:26–32. PubMed
Wang T., Liu Y., Edwards G., Krzizike D., Scherman H., Luger K.. The histone chaperone FACT modulates nucleosome structure by tethering its components. Life Sci. Alliance. 2018; 1:e201800107. PubMed PMC
Lyumkis D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 2019; 294:5181–5197. PubMed PMC
Punjani A., Fleet D.J.. 3D variability analysis: directly resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM images. J. Struct. Biol. 2021; 213:107702. PubMed
Sivkina A.L., Karlova M.G., Valieva M.E., McCullough L.L., Formosa T., Shaytan A.K., Feofanov A.V., Kirpichnikov M.P., Sokolova O.S., Studitsky V.M.. Electron microscopy analysis of ATP-independent nucleosome unfolding by FACT. Commun. Biol. 2022; 5:2. PubMed PMC
Buratowski S. The CTD code. Nat. Struct. Biol. 2003; 10:679–680. PubMed
Jasnovidova O., Klumpler T., Kubicek K., Kalynych S., Plevka P., Stefl R.. Structure and dynamics of the RNAPII CTDsome with rtt103. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:11133–11138. PubMed PMC
Jasnovidova O., Krejcikova M., Kubicek K., Stefl R.. Structural insight into recognition of phosphorylated threonine-4 of RNA polymerase II C-terminal domain by rtt103p. EMBO Rep. 2017; 18:906–913. PubMed PMC
Harlen K.M., Churchman L.S.. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 2017; 18:263–273. PubMed
Yurko N.M., Manley J.L.. The RNA polymerase II CTD “orphan” residues: emerging insights into the functions of tyr-1, thr-4, and Ser-7. Transcription. 2018; 9:30–40. PubMed PMC
Lyons D.E., McMahon S., Ott M.. A combinatorial view of old and new RNA polymerase II modifications. Transcription. 2020; 11:66–82. PubMed PMC
Bae H.J., Dubarry M., Jeon J., Soares L.M., Dargemont C., Kim J., Geli V., Buratowski S.. The set1 N-terminal domain and swd2 interact with RNA polymerase II CTD to recruit COMPASS. Nat. Commun. 2020; 11:2181. PubMed PMC
Han Z., Jasnovidova O., Haidara N., Tudek A., Kubicek K., Libri D., Stefl R., Porrua O.. Termination of non-coding transcription in yeast relies on both an RNA pol II CTD interaction domain and a CTD-mimicking region in sen1. EMBO J. 2020; 39:e101548. PubMed PMC
Jasnovidova O., Stefl R.. The CTD code of RNA polymerase II: a structural view. Wiley Interdiscip. Rev. RNA. 2013; 4:1–16. PubMed
Eick D., Geyer M.. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 2013; 113:8456–8490. PubMed
Heidemann M., Eick D.. Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code. RNA Biol. 2012; 9:1144–1146. PubMed PMC
Kubíček K., Pasulka J., Černá H., Löhr F., Štefl R.. 1H, 13C, and 15N resonance assignments for the CTD-interacting domain of nrd1 bound to Ser5-phosphorylated CTD of RNA polymerase II. Biomol. NMR Assign. 2011; 5:203–205. PubMed
Napolitano G., Lania L., Majello B.. RNA polymerase II CTD modifications: how many tales from a single tail. J. Cell. Physiol. 2014; 229:538–544. PubMed
Jeronimo C., Collin P., Robert F.. The RNA polymerase II CTD: the increasing complexity of a low-complexity protein domain. J. Mol. Biol. 2016; 428:2607–2622. PubMed
Zaborowska J., Egloff S., Murphy S.. The pol II CTD: new twists in the tail. Nat. Struct. Mol. Biol. 2016; 23:771–777. PubMed
Nemec C.M., Yang F., Gilmore J.M., Hintermair C., Ho Y.H., Tseng S.C., Heidemann M., Zhang Y., Florens L., Gasch A.P.et al. .. Different phosphoisoforms of RNA polymerase II engage the rtt103 termination factor in a structurally analogous manner. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:E3944–E3953. PubMed PMC
Venkatesh S., Workman J.L.. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 2015; 16:178–189. PubMed
Ehara H., Yokoyama T., Shigematsu H., Yokoyama S., Shirouzu M., Sekine S.I.. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science. 2017; 357:921–924. PubMed
Chen S., Rufiange A., Huang H., Rajashankar K.R., Nourani A., Patel D.J.. Structure–function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2. Genes Dev. 2015; 29:1326–1340. PubMed PMC
Mei Q., Xu C., Gogol M., Tang J., Chen W., Yu X., Workman J.L., Li S.. Set1-catalyzed H3K4 trimethylation antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and chronological life span. Nucleic Acids Res. 2019; 47:3434–3449. PubMed PMC
Akhavantabib N., Krzizike D.D., Neumann V., D’Arcy S. Stoichiometry of rtt109 complexes with vps75 and histones H3–H4. Life Sci. Alliance. 2020; 3:e202000771. PubMed PMC
Srivastava D.K., Gunjan S., Das C., Seshadri V., Roy S.. Structural insights into histone chaperone asf1 and its characterization from plasmodium falciparum. Biochem. J. 2021; 478:1117–1136. PubMed
Wang P., Yang W., Zhao S., Nashun B.. Regulation of chromatin structure and function: insights into the histone chaperone FACT. Cell Cycle. 2021; 20:465–479. PubMed PMC
Formosa T., Winston F.. The role of FACT in managing chromatin: disruption, assembly, or repair?. Nucleic Acids Res. 2021; 48:11929–11941. PubMed PMC
Viktorovskaya O., Chuang J., Jain D., Reim N.I., López-Rivera F., Murawska M., Spatt D., Stirling Churchman L., Park P.J., Winston F.. Essential histone chaperones collaborate to regulate transcription and chromatin integrity. Genes Dev. 2021; 35:698–712. PubMed PMC
Reim N.I., Chuang J., Jain D., Alver B.H., Park P.J., Winston F.. The conserved elongation factor spn1 is required for normal transcription, histone modifications, and splicing in saccharomyces cerevisiae. Nucleic Acids Res. 2020; 48:10241–10258. PubMed PMC
Dronamraju R., Kerschner J.L., Peck S.A., Hepperla A.J., Adams A.T., Hughes K.D., Aslam S., Yoblinski A.R., Davis I.J., Mosley A.L.et al. .. Casein kinase II phosphorylation of spt6 enforces transcriptional fidelity by maintaining spn1-spt6 interaction. Cell Rep. 2018; 25:3476–3489. PubMed PMC