Cooperation between intrinsically disordered and ordered regions of Spt6 regulates nucleosome and Pol II CTD binding, and nucleosome assembly

. 2022 Jun 10 ; 50 (10) : 5961-5973.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35640611

Transcription elongation factor Spt6 associates with RNA polymerase II (Pol II) and acts as a histone chaperone, which promotes the reassembly of nucleosomes following the passage of Pol II. The precise mechanism of nucleosome reassembly mediated by Spt6 remains unclear. In this study, we used a hybrid approach combining cryo-electron microscopy and small-angle X-ray scattering to visualize the architecture of Spt6 from Saccharomyces cerevisiae. The reconstructed overall architecture of Spt6 reveals not only the core of Spt6, but also its flexible N- and C-termini, which are critical for Spt6's function. We found that the acidic N-terminal region of Spt6 prevents the binding of Spt6 not only to the Pol II CTD and Pol II CTD-linker, but also to pre-formed intact nucleosomes and nucleosomal DNA. The N-terminal region of Spt6 self-associates with the tSH2 domain and the core of Spt6 and thus controls binding to Pol II and nucleosomes. Furthermore, we found that Spt6 promotes the assembly of nucleosomes in vitro. These data indicate that the cooperation between the intrinsically disordered and structured regions of Spt6 regulates nucleosome and Pol II CTD binding, and also nucleosome assembly.

Zobrazit více v PubMed

Clark-Adams C.D., Winston F.. The SPT6 gene is essential for growth and is required for delta-mediated transcription in saccharomyces cerevisiae. Mol. Cell. Biol. 1987; 7:679–686. PubMed PMC

Endoh M., Zhu W., Hasegawa J., Watanabe H., Kim D.-K., Aida M., Inukai N., Narita T., Yamada T., Furuya A.et al. .. Human spt6 stimulates transcription elongation by RNA polymerase II in vitro. Mol. Cell. Biol. 2004; 24:3324–3336. PubMed PMC

Ardehali M.B., Yao J., Adelman K., Fuda N.J., Petesch S.J., Webb W.W., Lis J.T.. Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J. 2009; 28:1067–1077. PubMed PMC

Baniahmad C., Nawaz Z., Baniahmad A., Gleeson M.A.G., Tsai M.J., O’Malley B.W. Enhancement of human estrogen receptor activity by SPT6: a potential coactivator. Mol. Endocrinol. 1995; 9:34–43. PubMed

Yoh S.M., Cho H., Pickle L., Evans R.M., Jones K.A.. The spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev. 2007; 21:160–174. PubMed PMC

Adkins M.W., Tyler J.K.. Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions. Mol. Cell. 2006; 21:405–416. PubMed

Obara E.A.A., Aguilar-Morante D., Rasmussen R.D., Frias A., Vitting-Serup K., Lim Y.C., Elbæk K.J., Pedersen H., Vardouli L., Jensen K.E.et al. .. SPT6-driven error-free DNA repair safeguards genomic stability of glioblastoma cancer stem-like cells. Nat. Commun. 2020; 11:4709. PubMed PMC

Dronamraju R., Hepperla A.J., Shibata Y., Adams A.T., Magnuson T., Davis I.J., Strahl B.D.. Spt6 association with RNA polymerase II directs mRNA turnover during transcription. Mol. Cell. 2018; 70:1054–1066. PubMed PMC

Bobkov G.O.M., Huang A., van den Berg S.J.W., Mitra S., Anselm E., Lazou V., Schunter S., Feederle R., Imhof A., Lusser A.et al. .. Spt6 is a maintenance factor for centromeric CENP-A. Nat. Commun. 2020; 11:2919. PubMed PMC

Gopalakrishnan R., Marr S.K., Kingston R.E., Winston F.. A conserved genetic interaction between spt6 and set2 regulates H3K36 methylation. Nucleic Acids Res. 2019; 47:3888–3903. PubMed PMC

Youdell M.L., Kizer K.O., Kisseleva-Romanova E., Fuchs S.M., Duro E., Strahl B.D., Mellor J.. Roles for ctk1 and spt6 in regulating the different methylation states of histone H3 lysine 36. Mol. Cell. Biol. 2008; 28:4915–4926. PubMed PMC

DeGennaro C.M., Alver B.H., Marguerat S., Stepanova E., Davis C.P., Bahler J., Park P.J., Winston F.. Spt6 regulates intragenic and antisense transcription, nucleosome positioning, and histone modifications genome-wide in fission yeast. Mol. Cell. Biol. 2013; 33:4779–4792. PubMed PMC

Doris S.M., Chuang J., Viktorovskaya O., Murawska M., Spatt D., Churchman L.S., Winston F.. Spt6 is required for the fidelity of promoter selection. Mol. Cell. 2018; 72:687–699. PubMed PMC

Jeronimo C., Poitras C., Robert F.. Histone recycling by FACT and spt6 during transcription prevents the scrambling of histone modifications. Cell Rep. 2019; 28:1206–1218. PubMed

Hainer S.J., Pruneski J.A., Mitchell R.D., Monteverde R.M., Martens J.A.. Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev. 2011; 25:29–40. PubMed PMC

Kaplan C.D., Laprade L., Winston F.. Transcription elongation factors repress transcription initiation from cryptic sites. Science. 2003; 301:1096–1099. PubMed

Mayer A., Lidschreiber M., Siebert M., Leike K., Söding J., Cramer P.. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 2010; 17:1272–1278. PubMed

Vos S.M., Farnung L., Boehning M., Wigge C., Linden A., Urlaub H., Cramer P.. Structure of activated transcription complex pol II–DSIF–PAF–SPT6. Nature. 2018; 560:607–612. PubMed

Close D., Johnson S.J., Sdano M.A., McDonald S.M., Robinson H., Formosa T., Hill C.P.. Crystal structures of the s. cerevisiae spt6 core and C-terminal tandem SH2 domain. J. Mol. Biol. 2011; 408:697–713. PubMed PMC

Vos S.M., Farnung L., Linden A., Urlaub H., Cramer P.. Structure of complete pol II–DSIF–PAF–SPT6 transcription complex reveals RTF1 allosteric activation. Nat. Struct. Mol. Biol. 2020; 27:668–677. PubMed

Sun M., Larivière L., Dengl S., Mayer A., Cramer P.. A tandem SH2 domain in transcription elongation factor spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD). J. Biol. Chem. 2010; 285:41597–41603. PubMed PMC

Sdano M.A., Fulcher J.M., Palani S., Chandrasekharan M.B., Parnell T.J., Whitby F.G., Formosa T., Hill C.P.. A novel SH2 recognition mechanism recruits spt6 to the doubly phosphorylated RNA polymerase II linker at sites of transcription. Elife. 2017; 6:e28723. PubMed PMC

Brázda P., Krejčíková M., Kasiliauskaite A., Šmiřáková E., Klumpler T., Vácha R., Kubíček K., Štefl R.. Yeast spt6 reads multiple phosphorylation patterns of RNA polymerase II C-Terminal domain in vitro. J. Mol. Biol. 2020; 432:4092–4107. PubMed PMC

Bortvin A., Winston F.. Spt6p controls chromatin. Science. 1996; 272:473–477. PubMed

McCullough L., Connell Z., Petersen C., Formosa T.. The abundant histone chaperones spt6 and FACT collaborate to assemble, inspect, and maintain chromatin structure in saccharomyces cerevisiae. Genetics. 2015; 201:1030–1045. PubMed PMC

McDonald S.M., Close D., Xin H., Formosa T., Hill C.P.. Structure and biological importance of the spn1-spt6 interaction, and its regulatory role in nucleosome binding. Mol. Cell. 2010; 40:725–735. PubMed PMC

Klock H.E., Koesema E.J., Knuth M.W., Lesley S.A.. Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins Struct. Funct. Genet. 2008; 71:982–994. PubMed

Ivić N., Groschup B., Bilokapić S., Halić M.. Simplified method for rapid purification of soluble histones. Croat. Chem. Acta. 2016; 89:153–162.

Bilokapic S., Halic M.. Nucleosome and ubiquitin position set2 to methylate H3K36. Nat. Commun. 2019; 10:3795. PubMed PMC

Bilokapic S., Strauss M., Halic M.. Structural rearrangements of the histone octamer translocate DNA. Nat. Commun. 2018; 9:1330. PubMed PMC

Kubicek K., Cerna H., Holub P., Pasulka J., Hrossova D., Loehr F., Hofr C., Vanacova S., Stefl R.. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of nrdl. Genes Dev. 2012; 26:1891–1896. PubMed PMC

Mastronarde D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005; 152:36–51. PubMed

Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A.. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017; 14:331–332. PubMed PMC

Zhang K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016; 193:1–12. PubMed PMC

Tang G., Peng L., Baldwin P.R., Mann D.S., Jiang W., Rees I., Ludtke S.J.. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 2007; 157:38–46. PubMed

Wagner T., Merino F., Stabrin M., Moriya T., Antoni C., Apelbaum A., Hagel P., Sitsel O., Raisch T., Prumbaum D.et al. .. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019; 2:218. PubMed PMC

Zivanov J., Nakane T., Forsberg B.O., Kimanius D., Hagen W.J., Lindahl E., Scheres S.H.. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018; 7:e42166. PubMed PMC

Punjani A., Rubinstein J.L., Fleet D.J., Brubaker M.A.. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017; 14:290–296. PubMed

Emsley P., Lohkamp B., Scott W.G., Cowtan K.. Features and development of coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010; 66:486–501. PubMed PMC

Liebschner D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J.et al. .. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in phenix. Acta Crystallogr. Sect. D Struct. Biol. 2019; 75:861–877. PubMed PMC

Croll T.I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. Sect. D Struct. Biol. 2018; 74:519–530. PubMed PMC

Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B.et al. .. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018; 27:293–315. PubMed PMC

Franke D., Petoukhov M.V., Konarev P.V., Panjkovich A., Tuukkanen A., Mertens H.D.T., Kikhney A.G., Hajizadeh N.R., Franklin J.M., Jeffries C.M.et al. .. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 2017; 50:1212–1225. PubMed PMC

Petoukhov M.V., Franke D., Shkumatov A.V., Tria G., Kikhney A.G., Gajda M., Gorba C., Mertens H.D.T., Konarev P.V., Svergun D.I.. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 2012; 45:342–350. PubMed PMC

Tria G., Mertens H.D.T., Kachala M., Svergun D.I.. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ. 2015; 2:207–217. PubMed PMC

Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E.. UCSF chimerax: structure visualization for researchers, educators, and developers. Protein Sci. 2021; 30:70–82. PubMed PMC

Burugula B.B., Jeronimo C., Pathak R., Jones J.W., Robert F., Govind C.K.. Histone deacetylases and phosphorylated polymerase II C-Terminal domain recruit spt6 for cotranscriptional histone reassembly. Mol. Cell. Biol. 2014; 34:4115–4129. PubMed PMC

Mayer A., Heidemann M., Lidschreiber M., Schreieck A., Sun M., Hintermair C., Kremmer E., Eick D., Cramer P.. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science. 2012; 336:1723–1725. PubMed

Pardal A.J., Fernandes-Duarte F., Bowman A.J.. The histone chaperoning pathway: from ribosome to nucleosome. Essays Biochem. 2019; 63:29–43. PubMed PMC

Hammond C.M., Strømme C.B., Huang H., Patel D.J., Groth A.. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 2017; 18:141–158. PubMed PMC

Dyer P.N., Edayathumangalam R.S., White C.L., Bao Y., Chakravarthy S., Muthurajan U.M., Luger K.. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 2003; 375:23–44. PubMed

Muthurajan U., Mattiroli F., Bergeron S., Zhou K., Gu Y., Chakravarthy S., Dyer P., Irving T., Luger K.. In vitro chromatin assembly: strategies and quality control. Methods in Enzymology. 2016; 573:Academic Press Inc; 3–41. PubMed PMC

Orphanides G., LeRoy G., Chang C.H., Luse D.S., Reinberg D.. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell. 1998; 92:105–116. PubMed

Ivanovska I., Jacques P.-E., Rando O.J., Robert F., Winston F.. Control of chromatin structure by spt6: different consequences in coding and regulatory regions. Mol. Cell. Biol. 2011; 31:531–541. PubMed PMC

Warren C., Shechter D.. Fly fishing for histones: catch and release by histone chaperone intrinsically disordered regions and acidic stretches. J. Mol. Biol. 2017; 429:2401–2426. PubMed PMC

Liu Y., Zhou K., Zhang N., Wei H., Tan Y.Z., Zhang Z., Carragher B., Potter C.S., D’Arcy S., Luger K. FACT caught in the act of manipulating the nucleosome. Nature. 2019; 577:426–431. PubMed PMC

Zhou K., Liu Y., Luger K.. Histone chaperone FACT FAcilitates chromatin transcription: mechanistic and structural insights. Curr. Opin. Struct. Biol. 2020; 65:26–32. PubMed

Wang T., Liu Y., Edwards G., Krzizike D., Scherman H., Luger K.. The histone chaperone FACT modulates nucleosome structure by tethering its components. Life Sci. Alliance. 2018; 1:e201800107. PubMed PMC

Lyumkis D. Challenges and opportunities in cryo-EM single-particle analysis. J. Biol. Chem. 2019; 294:5181–5197. PubMed PMC

Punjani A., Fleet D.J.. 3D variability analysis: directly resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM images. J. Struct. Biol. 2021; 213:107702. PubMed

Sivkina A.L., Karlova M.G., Valieva M.E., McCullough L.L., Formosa T., Shaytan A.K., Feofanov A.V., Kirpichnikov M.P., Sokolova O.S., Studitsky V.M.. Electron microscopy analysis of ATP-independent nucleosome unfolding by FACT. Commun. Biol. 2022; 5:2. PubMed PMC

Buratowski S. The CTD code. Nat. Struct. Biol. 2003; 10:679–680. PubMed

Jasnovidova O., Klumpler T., Kubicek K., Kalynych S., Plevka P., Stefl R.. Structure and dynamics of the RNAPII CTDsome with rtt103. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:11133–11138. PubMed PMC

Jasnovidova O., Krejcikova M., Kubicek K., Stefl R.. Structural insight into recognition of phosphorylated threonine-4 of RNA polymerase II C-terminal domain by rtt103p. EMBO Rep. 2017; 18:906–913. PubMed PMC

Harlen K.M., Churchman L.S.. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 2017; 18:263–273. PubMed

Yurko N.M., Manley J.L.. The RNA polymerase II CTD “orphan” residues: emerging insights into the functions of tyr-1, thr-4, and Ser-7. Transcription. 2018; 9:30–40. PubMed PMC

Lyons D.E., McMahon S., Ott M.. A combinatorial view of old and new RNA polymerase II modifications. Transcription. 2020; 11:66–82. PubMed PMC

Bae H.J., Dubarry M., Jeon J., Soares L.M., Dargemont C., Kim J., Geli V., Buratowski S.. The set1 N-terminal domain and swd2 interact with RNA polymerase II CTD to recruit COMPASS. Nat. Commun. 2020; 11:2181. PubMed PMC

Han Z., Jasnovidova O., Haidara N., Tudek A., Kubicek K., Libri D., Stefl R., Porrua O.. Termination of non-coding transcription in yeast relies on both an RNA pol II CTD interaction domain and a CTD-mimicking region in sen1. EMBO J. 2020; 39:e101548. PubMed PMC

Jasnovidova O., Stefl R.. The CTD code of RNA polymerase II: a structural view. Wiley Interdiscip. Rev. RNA. 2013; 4:1–16. PubMed

Eick D., Geyer M.. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 2013; 113:8456–8490. PubMed

Heidemann M., Eick D.. Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code. RNA Biol. 2012; 9:1144–1146. PubMed PMC

Kubíček K., Pasulka J., Černá H., Löhr F., Štefl R.. 1H, 13C, and 15N resonance assignments for the CTD-interacting domain of nrd1 bound to Ser5-phosphorylated CTD of RNA polymerase II. Biomol. NMR Assign. 2011; 5:203–205. PubMed

Napolitano G., Lania L., Majello B.. RNA polymerase II CTD modifications: how many tales from a single tail. J. Cell. Physiol. 2014; 229:538–544. PubMed

Jeronimo C., Collin P., Robert F.. The RNA polymerase II CTD: the increasing complexity of a low-complexity protein domain. J. Mol. Biol. 2016; 428:2607–2622. PubMed

Zaborowska J., Egloff S., Murphy S.. The pol II CTD: new twists in the tail. Nat. Struct. Mol. Biol. 2016; 23:771–777. PubMed

Nemec C.M., Yang F., Gilmore J.M., Hintermair C., Ho Y.H., Tseng S.C., Heidemann M., Zhang Y., Florens L., Gasch A.P.et al. .. Different phosphoisoforms of RNA polymerase II engage the rtt103 termination factor in a structurally analogous manner. Proc. Natl. Acad. Sci. U.S.A. 2017; 114:E3944–E3953. PubMed PMC

Venkatesh S., Workman J.L.. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 2015; 16:178–189. PubMed

Ehara H., Yokoyama T., Shigematsu H., Yokoyama S., Shirouzu M., Sekine S.I.. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science. 2017; 357:921–924. PubMed

Chen S., Rufiange A., Huang H., Rajashankar K.R., Nourani A., Patel D.J.. Structure–function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2. Genes Dev. 2015; 29:1326–1340. PubMed PMC

Mei Q., Xu C., Gogol M., Tang J., Chen W., Yu X., Workman J.L., Li S.. Set1-catalyzed H3K4 trimethylation antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and chronological life span. Nucleic Acids Res. 2019; 47:3434–3449. PubMed PMC

Akhavantabib N., Krzizike D.D., Neumann V., D’Arcy S. Stoichiometry of rtt109 complexes with vps75 and histones H3–H4. Life Sci. Alliance. 2020; 3:e202000771. PubMed PMC

Srivastava D.K., Gunjan S., Das C., Seshadri V., Roy S.. Structural insights into histone chaperone asf1 and its characterization from plasmodium falciparum. Biochem. J. 2021; 478:1117–1136. PubMed

Wang P., Yang W., Zhao S., Nashun B.. Regulation of chromatin structure and function: insights into the histone chaperone FACT. Cell Cycle. 2021; 20:465–479. PubMed PMC

Formosa T., Winston F.. The role of FACT in managing chromatin: disruption, assembly, or repair?. Nucleic Acids Res. 2021; 48:11929–11941. PubMed PMC

Viktorovskaya O., Chuang J., Jain D., Reim N.I., López-Rivera F., Murawska M., Spatt D., Stirling Churchman L., Park P.J., Winston F.. Essential histone chaperones collaborate to regulate transcription and chromatin integrity. Genes Dev. 2021; 35:698–712. PubMed PMC

Reim N.I., Chuang J., Jain D., Alver B.H., Park P.J., Winston F.. The conserved elongation factor spn1 is required for normal transcription, histone modifications, and splicing in saccharomyces cerevisiae. Nucleic Acids Res. 2020; 48:10241–10258. PubMed PMC

Dronamraju R., Kerschner J.L., Peck S.A., Hepperla A.J., Adams A.T., Hughes K.D., Aslam S., Yoblinski A.R., Davis I.J., Mosley A.L.et al. .. Casein kinase II phosphorylation of spt6 enforces transcriptional fidelity by maintaining spn1-spt6 interaction. Cell Rep. 2018; 25:3476–3489. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace