Ecology of aerobic anoxygenic phototrophs on a fine-scale taxonomic resolution in Adriatic Sea unravelled by unsupervised neural network

. 2024 Apr 29 ; 19 (1) : 28. [epub] 20240429

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38685092

Grantová podpora
UIP-2019-04-8401 Hrvatska Zaklada za Znanost

Odkazy

PubMed 38685092
PubMed Central PMC11059731
DOI 10.1186/s40793-024-00573-6
PII: 10.1186/s40793-024-00573-6
Knihovny.cz E-zdroje

BACKGROUND: Aerobic anoxygenic phototrophs are metabolically highly active, diverse and widespread polyphyletic members of bacterioplankton whose photoheterotrophic capabilities shifted the paradigm about simplicity of the microbial food chain. Despite their considerable contribution to the transformation of organic matter in marine environments, relatively little is still known about their community structure and ecology at fine-scale taxonomic resolution. Up to date, there is no comprehensive (i.e. qualitative and quantitative) analysis of their community composition in the Adriatic Sea. RESULTS: Analysis was based on pufM gene metabarcoding and quantitative FISH-IR approach with the use of artificial neural network. Significant seasonality was observed with regards to absolute abundances (maximum average abundances in spring 2.136 ± 0.081 × 104 cells mL-1, minimum in summer 0.86 × 104 cells mL-1), FISH-IR groups (Roseobacter clade prevalent in autumn, other Alpha- and Gammaproteobacteria in summer) and pufM sequencing data agglomerated at genus-level. FISH-IR results revealed heterogeneity with the highest average relative contribution of AAPs assigned to Roseobacter clade (37.66%), followed by Gammaproteobacteria (35.25%) and general Alphaproteobacteria (31.15%). Community composition obtained via pufM sequencing was dominated by Gammaproteobacteria clade NOR5/OM60, specifically genus Luminiphilus, with numerous rare genera present in relative abundances below 1%. The use of artificial neural network connected this community to biotic (heterotrophic bacteria, HNA and LNA bacteria, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, bacterial production) and abiotic environmental factors (temperature, salinity, chlorophyll a and nitrate, nitrite, ammonia, total nitrogen, silicate, and orthophosphate concentration). A type of neural network, neural gas analysis at order-, genus- and ASV-level, resulted in five distinct best matching units (representing particular environments) and revealed that high diversity was generally independent of temperature, salinity, and trophic status of the environment, indicating a potentially dissimilar behaviour of aerobic anoxygenic phototrophs compared to the general bacterioplankton. CONCLUSION: This research represents the first comprehensive analysis of aerobic anoxygenic phototrophs in the Adriatic Sea on a trophic gradient during a year-round period. This study is also one of the first reports of their genus-level ecology linked to biotic and abiotic environmental factors revealed by unsupervised neural network algorithm, paving the way for further research of substantial contribution of this important bacterial functional group to marine ecosystems.

Zobrazit více v PubMed

Harashima K, Shiba T, Murata N. Aerobic photosynthetic bacteria. 1989. PubMed

Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG. Bacterial photosynthesis in surface waters of the open ocean. Nature. 2000;407:177–179. doi: 10.1038/35025044. PubMed DOI

Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science (80-) 2001;292:2492–5. doi: 10.1126/science.1059707. PubMed DOI

Hojerová E, Mašín M, Brunet C, Ferrera I, Gasol JM, Koblížek M. Distribution and growth of aerobic anoxygenic phototrophs in the Mediterranean Sea. Environ Microbiol. 2011;13:2717–2725. doi: 10.1111/j.1462-2920.2011.02540.x. PubMed DOI

Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. ISME J. 2019;13:1975–1987. doi: 10.1038/s41396-019-0401-4. PubMed DOI PMC

Villena-Alemany C, Mujakić I, Fecskeová LK, Woodhouse J, Auladell A, Dean J, et al. Phenology and ecological role of Aerobic Anoxygenic Phototrophs in fresh waters. Microbiome. 2024;12:65. doi: 10.1186/s40168-024-01786-0. PubMed DOI PMC

Villena-Alemany C, Mujakić I, Porcal P, Koblížek M, Piwosz K. Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake. Environ Microbiol Rep. 2023;15:60–71. doi: 10.1111/1758-2229.13131. PubMed DOI PMC

Sánchez O, Ferrera I, Mabrito I, Gazulla CR, Sebastián M, Auladell A, et al. Seasonal impact of grazing, viral mortality, resource availability and light on the group-specific growth rates of coastal Mediterranean bacterioplankton. Sci Rep. 2020 doi: 10.1038/s41598-020-76590-5. PubMed DOI PMC

Ferrera I, Sánchez O, Kolářová E, Koblížek M, Gasol JM. Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria. ISME J. 2017;11:2391–2393. doi: 10.1038/ismej.2017.79. PubMed DOI PMC

Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev. 2015;39:854–870. doi: 10.1093/femsre/fuv032. PubMed DOI

Vrdoljak Tomaš A, Šantić D, Šolić M, Skejić S, Milinković A, Cvitešić Kušan A, et al. How do open coastal fire episodes’ impact sea surface microlayer neuston communities? Sci Total Environ. 2023;861:160593. doi: 10.1016/j.scitotenv.2022.160593. PubMed DOI

Eiler A. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl Environ Microbiol. 2006;72:7431–7437. doi: 10.1128/AEM.01559-06. PubMed DOI PMC

Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–546. doi: 10.1038/nrmicro1180. PubMed DOI

Ferrera I, Gasol JM, Sebastián M, Hojerová E, Kobížek M. Comparison of growth rates of aerobic anoxygenic phototrophic bacteria and other bacterioplankton groups in coastal mediterranean waters. Appl Environ Microbiol. 2011;77:7451–7458. doi: 10.1128/AEM.00208-11. PubMed DOI PMC

Stegman MR, Cottrell MT, Kirchman DL. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary. ISME J. 2014;8:2339–2348. doi: 10.1038/ismej.2014.75. PubMed DOI PMC

Fecskeová LK, Piwosz K, Šantić D, Šestanović S, Vrdoljak Tomaš A, Hanusova M, et al. Lineage-specific growth curves document large differences in response of individual groups of marine bacteria to the top-down and bottom-up controls. mSystems. 2021;6:e00934-21. doi: 10.1128/mSystems.00934-21. PubMed DOI PMC

Piwosz K, Villena-Alemany C, Mujakić I. Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake. ISME J. 2022;16:1046–1054. doi: 10.1038/s41396-021-01142-2. PubMed DOI PMC

Ferrera I, Borrego CM, Salazar G, Gasol JM. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ Microbiol. 2014;16:2953–2965. doi: 10.1111/1462-2920.12278. PubMed DOI

Gazulla CR, Cabello AM, Sánchez P, Gasol JM, Sánchez O, Ferrera I. A metagenomic and amplicon sequencing combined approach reveals the best primers to study marine aerobic anoxygenic phototrophs. Microb Ecol. 2023;86:2161–2172. doi: 10.1007/s00248-023-02220-y. PubMed DOI PMC

Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:1–6. doi: 10.3389/fmicb.2017.02224. PubMed DOI PMC

Kasalický V, Zeng Y, Piwosz K, Šimek K, Kratochvilová H, Koblížek M. Aerobic anoxygenic photosynthesis is commonly present within the genus Limnohabitans. Appl Environ Microbiol. 2018 doi: 10.1128/AEM.02116-17. PubMed DOI PMC

Šantić D, Šestanović S, Vrdoljak A, Šolić M, Kušpilić G, Ninčević Gladan Ž, et al. Distribution of aerobic anoxygenic phototrophs in the Eastern Adriatic Sea. Mar Environ Res. 2017;130:134–141. doi: 10.1016/j.marenvres.2017.07.012. PubMed DOI

Vrdoljak Tomaš A, Šantić D, Šolić M, Ordulj M, Jozić S, Šestanović S, et al. Dynamics of aerobic anoxygenic phototrophs along the trophic gradient in the central Adriatic Sea. Deep Res Part II Top Stud Oceanogr. 2018;2019(164):112–121.

Vrdoljak Tomaš A, Šantić D, Stojan I, Šolić M. Aerobic anoxygenic phototrophs of the Adriatic Sea. Acta Adriat. 2023;64:1–10. doi: 10.32582/aa.64.1.1. DOI

Šantić D, Piwosz K, Matić F, Vrdoljak Tomaš A, Arapov J, Dean JL, et al. Artificial neural network analysis of microbial diversity in the central and southern Adriatic Sea. Sci Rep. 2021;11:1–15. doi: 10.1038/s41598-021-90863-7. PubMed DOI PMC

Artegiani A, Bregant D, Paschini E, Pinardi N, Raicich F, Russo A. The Adriatic Sea general circulation. Part I: air-sea interactions and water mass structure. J Phys Oceanogr. 1997;27:1492–514. doi: 10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2. DOI

Šantić D, Stojan I, Matić F, Trumbić Ž, Tomaš AV, Fredotović Ž, et al. Picoplankton diversity in an oligotrophic and high salinity environment in the central Adriatic Sea. Sci Rep. 2023 doi: 10.1038/s41598-023-34704-9. PubMed DOI PMC

Fuhrman JA, Azam F. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol. 1982;66:109–120. doi: 10.1007/BF00397184. DOI

Mašín M, Zdun A, Stoń-Egiert J, Nausch M, Labrenz M, Moulisová V, et al. Seasonal changes and diversity of aerobic anoxygenic phototrophs in the Baltic Sea. Aquat Microb Ecol. 2006;45:247–254. doi: 10.3354/ame045247. DOI

Mašín M, Nedoma J, Pechar L, Koblížek M. Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol. 2008;10:1988–1996. doi: 10.1111/j.1462-2920.2008.01615.x. PubMed DOI

Stojan I, Trumbić Ž, Lepen Pleić I, Šantić D. Evaluation of DNA extraction methods and direct PCR in metabarcoding of mock and marine bacterial communities. Front Microbiol. 2023 doi: 10.3389/fmicb.2023.1151907. PubMed DOI PMC

Béjà O, Suzuki M, Heidelberg J, Nelson W, Preston C, Hamada T, et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature. 2002;415:630–633. doi: 10.1038/415630a. PubMed DOI

Yutin N, Suzuki MT, Béjà O. Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl Environ Microbiol. 2005;71:8958–8962. doi: 10.1128/AEM.71.12.8958-8962.2005. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal. 2011;17:10–2.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07. PubMed DOI PMC

McMurdie PJ, Holmes S. Phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst Biol. 2019;68:365–369. doi: 10.1093/sysbio/syy054. PubMed DOI PMC

Czech L, Barbera P, Stamatakis A. Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics. 2020;36:3263–3265. doi: 10.1093/bioinformatics/btaa070. PubMed DOI PMC

Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, et al. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the global ocean sampling expedition metagenomes. Environ Microbiol. 2007;9:1464–1475. doi: 10.1111/j.1462-2920.2007.01265.x. PubMed DOI

Price MN, Dehal PS, Arkin AP. Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–1650. doi: 10.1093/molbev/msp077. PubMed DOI PMC

Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag; 2016.

Sisk-Hackworth L, Kelley ST. An application of compositional data analysis to multiomic time-series data. NAR Genomics Bioinforma. 2020 doi: 10.1093/nargab/lqaa079. PubMed DOI PMC

Tsilimigras MCB, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol. 2016;26:330–335. doi: 10.1016/j.annepidem.2016.03.002. PubMed DOI

Aitchison J. The statistical analysis of compositional data. J R Stat Soc Ser B. 1982;44:139–160. doi: 10.1111/j.2517-6161.1982.tb01195.x. DOI

Lahti L, Shetty S, Blake T, Salojarvi J. microbiome R package. 2017.

Oksanen AJ, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. vegan community ecology package version 2.5–7 November 2020.

Clarke KR, Gorley RN. Primer: user manual/tutorial. Prim Ltd, Plymouth, UK. 2015; 93.

Anderson MJ. Permutational Multivariate Analysis of Variance ( PERMANOVA). Wiley StatsRef Stat Ref Online. 2017; 1–15.

Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006;62:245–253. doi: 10.1111/j.1541-0420.2005.00440.x. PubMed DOI

Barnett DJM, Arts ICW, Penders J. microViz : an R package for microbiome data visualization and statistics. J Open Source Softw. 2021;6:3201. doi: 10.21105/joss.03201. DOI

Martinetz TM, Berkovich SG, Schulten KJ. “Neural-Gas” network for vector quantization and its application to time-series prediction. IEEE Trans Neural Netw. 1993;4:558–569. doi: 10.1109/72.238311. PubMed DOI

Šolić M, Šantić D, Šestanović S, Kušpilić G, Matić F, Vrdoljak Tomaš A, et al. Changing ecological conditions in the marine environment generate different microbial food web structures in a repeatable manner. Front Mar Sci. 2022 doi: 10.3389/fmars.2021.811155. DOI

Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: Various R programming tools for plotting Data.R package version 3.1.3. 2022.

Celussi M, Gallina AA, Ras J, Giani M, Del NP. Effect of sunlight on prokaryotic organic carbon uptake and dynamics of pigments relevant to photoheterotrophy in the Adriatic Sea. Aquat Microb Ecol. 2015;74:235–239. doi: 10.3354/ame01738. DOI

Lamy D, De Carvalho-Maalouf P, Cottrell MT, Lami R, Catala P, Oriol L, et al. Seasonal dynamics of aerobic anoxygenic phototrophs in a Mediterranean coastal lagoon. Aquat Microb Ecol. 2011;62:153–163. doi: 10.3354/ame01467. DOI

Waidner LA, Kirchman DL. Aerobic anoxygenic phototrophic bacteria attached to particles in turbid waters of the Delaware and Chesapeake estuaries. Appl Environ Microbiol. 2007;73:3936–3944. doi: 10.1128/AEM.00592-07. PubMed DOI PMC

Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–3101. doi: 10.1128/AEM.68.6.3094-3101.2002. PubMed DOI PMC

Kubota K. CARD-FISH for environmental microorganisms: Technical advancement and future applications. Microbes Environ. 2013;28:3–12. doi: 10.1264/jsme2.ME12107. PubMed DOI PMC

Magalhães C, Semedo M, Vezzi A, Øvreås L, Fadeev E, Cardozo-Mino MG, et al. Comparison of two 16S rRNA primers (V3–V4 and V4–V5) for studies of Arctic microbial communities. Front Microbiol. 2021 doi: 10.3389/fmicb.2021.637526. PubMed DOI PMC

Luo H, Moran MA. Evolutionary ecology of the marine roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–587. doi: 10.1128/MMBR.00020-14. PubMed DOI PMC

Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 2017;11:1483–1499. doi: 10.1038/ismej.2016.198. PubMed DOI PMC

Mary I, Cummings DG, Biegala IC, Burkill PH, Archer SD, Zubkov MV. Seasonal dynamics of bacterioplankton community structure at a coastal station in the western English Channel. Aquat Microb Ecol. 2006;42:119–126. doi: 10.3354/ame042119. DOI

Koblížek M, Moulisová V, Muroňová M, Oborník M. Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade. Folia Microbiol (Praha) 2015;60:37–43. doi: 10.1007/s12223-014-0337-z. PubMed DOI

Giebel HA, Wolterink M, Brinkhoff T, Simon M. Complementary energy acquisition via aerobic anoxygenic photosynthesis and carbon monoxide oxidation by Planktomarina temperata of the Roseobacter group. FEMS Microbiol Ecol. 2019;95:1–9. doi: 10.1093/femsec/fiz050. PubMed DOI

Teira E, Martínez-García S, Lønborg C, Álvarez-Salgado XA. Growth rates of different phylogenetic bacterioplankton groups in a coastal upwelling system. Environ Microbiol Rep. 2009;1:545–554. doi: 10.1111/j.1758-2229.2009.00079.x. PubMed DOI

Pinhassi J, Berman T. Differential growth response of colony-forming α- and γ-proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the Eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol. 2003;69:199–211. doi: 10.1128/AEM.69.1.199-211.2003. PubMed DOI PMC

Alonso-Sáez L, Gasol JM. Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in Northwestern Mediterranean coastal waters. Appl Environ Microbiol. 2007;73:3528–3535. doi: 10.1128/AEM.02627-06. PubMed DOI PMC

Simonato F, Gómez-Pereira PR, Fuchs BM, Amann R. Bacterioplankton diversity and community composition in the Southern Lagoon of Venice. Syst Appl Microbiol. 2010;33:128–138. doi: 10.1016/j.syapm.2009.12.006. PubMed DOI

Riou V, Périot M, Biegala IC. Specificity re-evaluation of oligonucleotide probes for the detection of marine picoplankton by tyramide signal amplification-fluorescent in situ hybridization. Front Microbiol. 2017;8:1–13. doi: 10.3389/fmicb.2017.00854. PubMed DOI PMC

Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol. 2008;6:339–348. doi: 10.1038/nrmicro1888. PubMed DOI

Spring S, Riedel T, Spröer C, Yan S, Harder J, Fuchs BM. Taxonomy and evolution of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria: Description of Luminiphilus syltensis gen. nov., sp. nov., reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov. BMC Microbiol. 2013;13:1–21. doi: 10.1186/1471-2180-13-118. PubMed DOI PMC

Mujakić I, Cabello-Yeves PJ, Villena-Alemany C, Piwosz K, Rodriguez-Valera F, Picazo A, et al. Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota. Environ Microbiol. 2023 doi: 10.1128/spectrum.01112-23. PubMed DOI PMC

Mujakić I, Andrei A-Ş, Shabarova T, Fecskeová LK, Salcher MM, Piwosz K, et al. Common presence of phototrophic gemmatimonadota in temperate freshwater lakes. mSystems. 2021 doi: 10.1128/mSystems.01241-20. PubMed DOI PMC

Mujakić I, Piwosz K, Koblížek M. Phylum gemmatimonadota and its role in the environment. Microorganisms. 2022;10:1–17. doi: 10.3390/microorganisms10010151. PubMed DOI PMC

Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470–2478. doi: 10.1038/s41396-018-0158-1. PubMed DOI PMC

Vilibić I, Matijević S, Šepić J, Kušpilić G. Changes in the Adriatic oceanographic properties induced by the Eastern Mediterranean Transient. Biogeosciences. 2012;9:2085–2097. doi: 10.5194/bg-9-2085-2012. DOI

Beg Paklar G, Vilibić I, Grbec B, Matić F, Mihanović H, Džoić T, et al. Record-breaking salinities in the middle Adriatic during summer 2017 and concurrent changes in the microbial food web. Prog Oceanogr. 2020;185:102345. doi: 10.1016/j.pocean.2020.102345. DOI

Jiang H, Dong H, Yu B, Lv G, Deng S, Wu Y, et al. Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiol Ecol. 2009;67:268–278. doi: 10.1111/j.1574-6941.2008.00616.x. PubMed DOI

Grevesse T, Guéguen C, Onana VE, Walsh DA. Degradation pathways for organic matter of terrestrial origin are widespread and expressed in Arctic Ocean microbiomes. Microbiome. 2022;10:1–21. doi: 10.1186/s40168-022-01417-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...