Artificial neural network analysis of microbial diversity in the central and southern Adriatic Sea
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34045659
PubMed Central
PMC8159981
DOI
10.1038/s41598-021-90863-7
PII: 10.1038/s41598-021-90863-7
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- mikrobiota * MeSH
- neuronové sítě * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středozemní moře MeSH
Bacteria are an active and diverse component of pelagic communities. The identification of main factors governing microbial diversity and spatial distribution requires advanced mathematical analyses. Here, the bacterial community composition was analysed, along with a depth profile, in the open Adriatic Sea using amplicon sequencing of bacterial 16S rRNA and the Neural gas algorithm. The performed analysis classified the sample into four best matching units representing heterogenic patterns of the bacterial community composition. The observed parameters were more differentiated by depth than by area, with temperature and identified salinity as important environmental variables. The highest diversity was observed at the deep chlorophyll maximum, while bacterial abundance and production peaked in the upper layers. The most of the identified genera belonged to Proteobacteria, with uncultured AEGEAN-169 and SAR116 lineages being dominant Alphaproteobacteria, and OM60 (NOR5) and SAR86 being dominant Gammaproteobacteria. Marine Synechococcus and Cyanobium-related species were predominant in the shallow layer, while Prochlorococcus MIT 9313 formed a higher portion below 50 m depth. Bacteroidota were represented mostly by uncultured lineages (NS4, NS5 and NS9 marine lineages). In contrast, Actinobacteriota were dominated by a candidatus genus Ca. Actinomarina. A large contribution of Nitrospinae was evident at the deepest investigated layer. Our results document that neural network analysis of environmental data may provide a novel insight into factors affecting picoplankton in the open sea environment.
Centre Algatech Institute of Microbiology of the Czech Acad Sci 379 81 Třeboň Czech Republic
Institute of Oceanography and Fisheries Šetalište Ivana Meštrovića 63 POB 500 21000 Split Croatia
National Marine Fisheries Research Institute Kołłątaja 1 81 332 Gdynia Poland
University of South Bohemia Faculty of Science Branišovská 1760 Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Pommier T, et al. Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by pyrosequencing of the 16S rRNA. Aquat. Microb. Ecol. 2010;61:221–233. doi: 10.3354/ame01484. DOI
Pinhassi J, et al. Seasonal changes in bacterioplankton nutrient limitation and their effects on bacterial community composition in the NW Mediterranean Sea. Aquat. Microb. Ecol. 2006;44(3):241–252. doi: 10.3354/ame044241. DOI
Sánchez O, Koblížek M, Gasol JM, Ferrera I. Effects of grazing, phosphorus and light on the growth rates of major bacterioplankton taxa in the coastal NW Mediterranean. Environ. Microbiol. Rep. 2017;9:300–309. doi: 10.1111/1758-2229.12535. PubMed DOI
Cram JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2014;9:563–580. doi: 10.1038/ismej.2014.153. PubMed DOI PMC
Ferrera I, et al. Evaluation of alternative high-throughput sequencing methodologies for the monitoring of marine picoplanktonic biodiversity based on rRNA gene amplicons. Front. Mar. Sci. 2016;3:147. doi: 10.3389/fmars.2016.00147. DOI
Walsh EA, et al. Bacterial diversity and community composition from seasurface to subseafloor. ISME J. 2016;10(4):979–989. doi: 10.1038/ismej.2015.175. PubMed DOI PMC
Zhou J, et al. Distribution patterns of microbial community structure along a 7000-mile latitudinal transect from the Mediterranean Sea across the Atlantic Ocean to the Brazilian Coastal Sea. Microb. Ecol. 2018;76(3):592–609. doi: 10.1007/s00248-018-1150-z. PubMed DOI
Haber M, et al. Microbial communities in an ultra-oligotrophic sea are more affected by season than by distance from shore. Preprint at bioRxiv. 2020 doi: 10.1101/2020.04.17.044305. PubMed DOI
Milici M, et al. Co-occurrence analysis of microbial taxa in the Atlantic ocean reveals high connectivity in the free-living bacterioplankton. Front. Microbiol. 2016;7:649. doi: 10.3389/fmicb.2016.00649. PubMed DOI PMC
Šolić M, et al. Spatio-temporal reproducibility of the microbial food web structure associated with the change in temperature: Long-term observations in the Adriatic Sea. Prog. Oceanogr. 2018;161:87–101. doi: 10.1016/j.pocean.2018.02.003. DOI
Šantić D, Krstulović N, Šolić M, Ordulj M, Kušpilić G. Dynamics of prokaryotic picoplankton community in the central and southern Adriatic Sea (Croatia) Helgol. Mar. Res. 2013;67:471. doi: 10.1007/s10152-012-0336-x. DOI
Batistić M, et al. Biological evidence of a winter convection event in the South Adriatic: A phytoplankton maximum in the aphotic zone. Cont. Shelf Res. 2012;44:57–71. doi: 10.1016/j.csr.2011.01.004. DOI
Šantić D, et al. Dynamics of picoplankton community from coastal waters to the open sea in the Central Adriatic. Mediterr. Mar. Sci. 2014;15:179–188. doi: 10.12681/mms.701. DOI
Šantić D, et al. Picoplankton distribution and activity in the deep waters of the southern Adriatic Sea. Water. 2019;11:1655. doi: 10.3390/w11081655. DOI
Šilović T, et al. Picoplankton distribution influenced by thermohaline circulation in the southern Adriatic. Cont. Shelf Res. 2018;155:21–33. doi: 10.1016/j.csr.2018.01.007. DOI
Vrdoljak Tomaš A, et al. Dynamics of Aerobic Anoxygenic Phototrophs along the trophic gradient in the central Adriatic Sea. Deep Sea Res. Pt II. 2019;164:112–121. doi: 10.1016/j.dsr2.2019.06.001. DOI
Vilibić I, Matijević S, Šepić J, Kušpilić G. Changes in the Adriatic oceanographic properties induced by the Eastern Mediterranean Transient. Biogeosciences. 2012;9:2085–2097. doi: 10.5194/bg-9-2085-2012. DOI
Yari S, Kovačević V, Cardin V, Gačić M, Bryden HL. Direct estimate of water, heat, and salt transport through the Strait of Otranto. J. Geophys. Res. Oceans. 2012 doi: 10.1029/2012JC007936. DOI
Korlević M, Ristova PP, Garić R, Amann R, Orlić S. Bacterial diversity in the South Adriatic Sea during a strong, deep winter convection year. Appl. Environ. Microbiol. 2015;81:1715–1726. doi: 10.1128/AEM.03410-14. PubMed DOI PMC
Šolić M, et al. Impact of water column stability dynamics on the succession of plankton food web types in the offshore area of the Adriatic Sea. J. Sea Res. 2020;158:101860. doi: 10.1016/j.seares.2020.101860. DOI
Beg Paklar G, et al. Record-breaking salinities in the middle Adriatic during summer 2017 and concurrent changes in the microbial food web. Prog. Oceanogr. 2020;185:102345. doi: 10.1016/j.pocean.2020.102345. DOI
Bandelj V, et al. Analysis of multitrophic plankton assemblages in the Lagoon of Venice. Mar. Ecol. Prog. Ser. 2008;368:23–40. doi: 10.3354/meps07565. DOI
Mazzocchi MG, et al. Regional and seasonal characteristics of epipelagic mesozooplankton in the Mediterranean Sea based on an artificial neural network analysis. J. Mar. Syst. 2014;135:64–80. doi: 10.1016/j.jmarsys.2013.04.009. DOI
Ninčević Gladan Ž, et al. The relationship between toxic phytoplankton species occurrence and environmental and meteorological factors along the Eastern Adriatic coast. Harmful Algae. 2020;92:101745. doi: 10.1016/j.hal.2020.101745. PubMed DOI
Martinetz TM, Berkovich SG, Schulten KJ. “Neural-gas” network for vector quantization and its application to time-series prediction. IEEE Trans. Neural Netw. 1993;4(4):558–569. doi: 10.1109/72.238311. PubMed DOI
Martinetz T, Schulten K.A. A neural-gas network learn topologies. In: Kohonen T, Mäkisara K, Simula O, Kangas J, editors. Artificial neural networks. Elsevier; 1991. pp. 397–402.
Cushman-Roisin, B., Gačić, M., Poulain, P. M. & Artegiani. A. (Eds.) Physical Oceanography of the Adriatic Sea: Past, Present and Future (Springer, 2013).
Grasshoff K. Methods of Seawater Analysis. Verlag Chemie; 1976. p. 307.
Justić D, Rabalais NN, Turner RE, Dortch Q. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuar. Coast. Shelf Sci. 1995;40:339–356. doi: 10.1016/S0272-7714(05)80014-9. DOI
Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1. doi: 10.1093/nar/gks808. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17(1):10–12. doi: 10.14806/ej.17.1.200. DOI
Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses. F1000Research. 2016;5:1492. doi: 10.12688/f1000research.8986.2. PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07. PubMed DOI PMC
Pruesse E, et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–7196. doi: 10.1093/nar/gkm864. PubMed DOI PMC
McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (2015).
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2009.
Gasol J.M., Morán X.A.G., et al. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. In: McGenity T, et al., editors. Hydrocarbon and lipid microbiology protocols. Springer; 2015. pp. 159–187.
Mašín M, et al. Seasonal changes and diversity of aerobic anoxygenic phototrophs in the Baltic Sea. Aquat. Microb. Ecol. 2006;45:247–254. doi: 10.3354/ame045247. DOI
Fuhrman JA, Azam F. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation and field results. Mar. Biol. 1982;66:109–120. doi: 10.1007/BF00397184. DOI
Clarke K, Gorley R.N. PRIMER v6: User Manual/Tutorial. 1. PRIMER-E; 2006. pp. 1–190.
Kohonen T. Self-organized information of topologically correct features maps. Biol. Cybern. 1982;43:59–69. doi: 10.1007/BF00337288. DOI
de Bolt E, Cottrell M, Verleysen M. Statistical tools to assess the reliability of self-organising maps. Neural Netw. 2002;15:967–978. doi: 10.1016/S0893-6080(02)00071-0. PubMed DOI
Matić F, Kalinić H, Vilibić I. Interpreting Self-Organizing Map errors in the classification of ocean patterns. Comput. Geosci. 2018;119:9–17. doi: 10.1016/j.cageo.2018.06.006. DOI
Zhuang Z, et al. Variability of Kuroshio surface axis northeast of Taiwan island derived from satellite altimeter data. Remote Sens. 2020;12:1059. doi: 10.3390/rs12071059. DOI
Matić F, et al. Oscillating Adriatic temperature and salinity regimes mapped using the Self-Organizing Maps method. Cont. Shelf Res. 2017;132:11–18. doi: 10.1016/j.csr.2016.11.006. DOI
Gołębiewski M, Całkiewicz J, Creer S, Piwosz K. Tideless estuaries in brackish seas as a possible freshwater-marine transition zones for bacteria—The case study of the Vistula river estuary. Environ. Microbiol. Rep. 2017;9:129–143. doi: 10.1111/1758-2229.12509. PubMed DOI
Ameryk A, Podgorska B, Witek Z. The dependence between bacterial production and environmental conditions in the Gulf of Gdansk. Oceanologia. 2005;47:27–45.
Langenheder S, Lindström ES, Tranvik LJ. Weak coupling between community composition and functioning of aquatic bacteria. Limnol. Oceanogr. 2005;50:957–967. doi: 10.4319/lo.2005.50.3.0957. DOI
Sunagawa S, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359. doi: 10.1126/science.1261359. PubMed DOI
Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 2007;5:782–791. doi: 10.1038/nrmicro1747. PubMed DOI
Mary I, et al. SAR11 dominance among metabolically active low nucleic acid bacterioplankton in surface waters along an Atlantic meridional transect. Aquat. Microb. Ecol. 2006;45:107–113. doi: 10.3354/ame045107. DOI
Martiny AC, Kathuria S, Berube PM. Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. PNAS. 2009;106:10787–10792. doi: 10.1073/pnas.0902532106. PubMed DOI PMC
Cerino F, et al. Spatial and temporal variability of pico-, nano-and microphytoplankton in the offshore waters of the southern Adriatic Sea (Mediterranean Sea) Cont. Shelf Res. 2012;44:94–105. doi: 10.1016/j.csr.2011.06.006. DOI
Sherr EB, Sherr BF, Longnecker K. Distribution of bacterial abundance and cell-specific nucleic acid content in the Northeast Pacific Ocean. Deep Sea Res. Pt. 2006;I(53):713–725. doi: 10.1016/j.dsr.2006.02.001. DOI
Ghiglione JF, Conan P, Pujo-Pay M. Diversity of total and active free-living vs. particle-attached bacteria in the euphotic zone of the NW Mediterranean Sea. FEMS Microbiol. Lett. 2009;299:9–21. doi: 10.1111/j.1574-6968.2009.01694.x. PubMed DOI
Mittelbach GG, et al. What is the observed relationship between species richness and productivity? Ecology. 2001;82(9):2381–2396. doi: 10.1890/0012-9658(2001)082[2381:WITORB]2.0.CO;2. DOI
Moore LR, Post AF, Rocap G, Chisholm SW. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 2002;47:989–996. doi: 10.4319/lo.2002.47.4.0989. DOI
Giovannoni SJ. SAR11 bacteria: The most abundant plankton in the oceans. Ann. Rev. Mar. Sci. 2017;9:231–255. doi: 10.1146/annurev-marine-010814-015934. PubMed DOI
Carlson CA, et al. Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J. 2008;3:283–295. doi: 10.1038/ismej.2008.117. PubMed DOI
Alonso-Sáez L, Gasol JM. Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in northwestern Mediterranean coastal waters. Appl. Environ. Microbiol. 2007;73:3528–3535. doi: 10.1128/AEM.02627-06. PubMed DOI PMC
Quero GM, Luna GM. Diversity of rare and abundant bacteria in surface waters of the Southern Adriatic Sea. Mar. Genom. 2014;17:9–15. doi: 10.1016/j.margen.2014.04.002. PubMed DOI
Piwosz K, et al. Bacterial and eukaryotic small-subunit amplicon data do not provide a quantitative picture of microbial communities, but they are reliable in the context of ecological interpretations. mSphere. 2020;5:e00052–e120. doi: 10.1128/mSphere.00052-20. PubMed DOI PMC
Lee S, Fuhrman JA. Spatial and temporal variation of natural bacterioplankton assemblages studied by total genomic DNA cross-hybridization. Limnol. Oceanogr. 1991;36(7):1277–1287. doi: 10.4319/lo.1991.36.7.1277. DOI
Acinas SG, Rodríguez-Valera F, Pedrós-Alió C. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol. Ecol. 1997;24(1):27–40. doi: 10.1111/j.1574-6941.1997.tb00420.x. DOI
Moeseneder MM, Winter C, Herndl GJ. Horizontal and vertical complexity of attached and free-living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints. Limnol. Oceanogr. 2001;46:95–107. doi: 10.4319/lo.2001.46.1.0095. DOI
Ghiglione JF, et al. Role of environmental factors for the vertical distribution (0–1000 m) of marine bacterial communities in the NW Mediterranean Sea. Biogeosci. Discuss. 2008;5(3):2131–2164.
Spietz RL, et al. Heterotrophic carbon metabolism and energy acquisition in Candidatus Thioglobus singularis strain PS1, a member of the SUP05 clade of marine Gammaproteobacteria. Environ. Microbiol. 2019;21(7):2391–2401. doi: 10.1111/1462-2920.146232391-2401. PubMed DOI
Walsh DA, et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science. 2009;326(5952):578–582. doi: 10.1126/science.1175309. PubMed DOI
Ngugi D, et al. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. ISME J. 2016;10:1383–1399. doi: 10.1038/ismej.2015.214. PubMed DOI PMC
Mehrshad M, Rodriguez-Valera F, Amoozegar MA, López-García P, Ghai R. The enigmatic SAR202 cluster up close: Shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J. 2018;12:655–668. doi: 10.1038/s41396-017-0009-5. PubMed DOI PMC
Wang Y, et al. Bacterial community structure in the Bohai Strait provides insights into organic matter niche partitioning. Continent. Shelf Res. 2018;169:46–54. doi: 10.1016/j.csr.2018.08.009. DOI
Orsi WD, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–2173. doi: 10.1038/ismej.2016.20. PubMed DOI PMC
Chafee M, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME. J. 2018;12:237–252. doi: 10.1038/ismej.2017.165. PubMed DOI PMC
Kirchman DL. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 2002;39:91–100. doi: 10.1111/j.1574-6941.2002.tb00910.x. PubMed DOI
Alonso C, Warnecke F, Amann R, Pernthaler J. High local and global diversity of Flavobacteria in marine plankton. Environ. Microbiol. 2007;9(5):1253–1266. doi: 10.1111/j.1462-2920.2007.01244. PubMed DOI
Díez-Vives C, Gasol JM, Acinas SG. Spatial and temporal variability among marine Bacteroidetes populations in the NW Mediterranean Sea. Syst. Appl. Microbiol. 2014;37:68–78. doi: 10.1016/j.syapm.2013.08.006. PubMed DOI
Díez-Vives C, et al. Delineation of ecologically distinct units of marine Bacteroidetes in the Northwestern Mediterranean Sea. Mol. Ecol. 2019;28(11):2846–2859. doi: 10.1111/mec.15068. PubMed DOI
Langenheder S, Bulling MT, Solan M, Prosser JI. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS ONE. 2010;5(5):e10834. doi: 10.1371/journal.pone.0010834. PubMed DOI PMC