The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
322669
European Research Council - International
PubMed
29208946
PubMed Central
PMC5864207
DOI
10.1038/s41396-017-0009-5
PII: 10.1038/s41396-017-0009-5
Knihovny.cz E-zdroje
- MeSH
- Chloroflexi klasifikace genetika izolace a purifikace metabolismus MeSH
- fylogeneze MeSH
- genomika MeSH
- metagenom MeSH
- metagenomika MeSH
- mikrobiota MeSH
- mořská voda mikrobiologie MeSH
- oceány a moře MeSH
- síra metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- oceány a moře MeSH
- Názvy látek
- síra MeSH
The dark ocean microbiota represents the unknown majority in the global ocean waters. The SAR202 cluster belonging to the phylum Chloroflexi was the first microbial lineage discovered to specifically inhabit the aphotic realm, where they are abundant and globally distributed. The absence of SAR202 cultured representatives is a significant bottleneck towards understanding their metabolic capacities and role in the marine environment. In this work, we use a combination of metagenome-assembled genomes from deep-sea datasets and publicly available single-cell genomes to construct a genomic perspective of SAR202 phylogeny, metabolism and biogeography. Our results suggest that SAR202 cluster members are medium sized, free-living cells with a heterotrophic lifestyle, broadly divided into two distinct clades. We present the first evidence of vertical stratification of these microbes along the meso- and bathypelagic ocean layers. Remarkably, two distinct species of SAR202 cluster are highly abundant in nearly all deep bathypelagic metagenomic datasets available so far. SAR202 members metabolize multiple organosulfur compounds, many appear to be sulfite-oxidizers and are predicted to play a major role in sulfur turnover in the dark water column. This concomitantly suggests an unsuspected availability of these nutrient sources to allow for the high abundance of these microbes in the deep sea.
Zobrazit více v PubMed
Azam F, Fenchel T, Field JG, Gray JC, Meyer-Reil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–64. doi: 10.3354/meps010257. DOI
Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Micro. 2015;13:13–27. doi: 10.1038/nrmicro3378. PubMed DOI
Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature. 1988;334:340–3. doi: 10.1038/334340a0. DOI
Britschgi TB, Giovannoni SJ. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol 1991;57:1707–13. PubMed PMC
Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992;89:5685–9. PubMed PMC
Fuhrman JA, Mccallum K, Davis AA. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol. 1993;59:1294–302. PubMed PMC
Giovannoni SJ, Rappé MS, Vergin KL, Adair NL. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the green non-sulfur bacteria. Proc Natl Acad Sci USA. 1996;93:7979–84. doi: 10.1073/pnas.93.15.7979. PubMed DOI PMC
Fuhrman Ja, Davis Aa. Widespread archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser. 1997;150:275–85. doi: 10.3354/meps150275. DOI
Urbach E, Vergin KL, Young L, Morse A, Larson GL, Giovannoni SJ. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr. 2001;46:557–72. doi: 10.4319/lo.2001.46.3.0557. DOI
Morris RM, Rappé MS, Urbach E, Connon SA, Rappe MS, Giovannoni SJ. Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Environ Microbiol 2004;70:2836–42. PubMed PMC
Schattenhofer M, Fuchs BM, Amann R, Zubkov MV, Tarran GA, Pernthaler J. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol. 2009;11:2078–93. doi: 10.1111/j.1462-2920.2009.01929.x. PubMed DOI
Varela MM, Van Aken HM, Herndl GJ. Abundance and activity of chloroflexi-type SAR202 bacterioplankton in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ Microbiol. 2008;10:1903–11. doi: 10.1111/j.1462-2920.2008.01627.x. PubMed DOI
Martín-Cuadrado AB, López-García P, Alba JC, Moreira D, Monticelli L, Strittmatter A, et al. Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS ONE. 2007;2:e914. doi: 10.1371/journal.pone.0000914. PubMed DOI PMC
Martin-Cuadrado AB, Ghai R, Gonzaga A, Rodriguez-Valera F. CO dehydrogenase genes found in metagenomic fosmid clones from the deep Mediterranean Sea. Appl Environ Microbiol. 2009;75:7436–44. doi: 10.1128/AEM.01283-09. PubMed DOI PMC
Thrash CJ, Temperton B, Swan BK, Landry ZC, Woyke T, DeLong EF, et al. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME J. 2014;8:1440–51. doi: 10.1038/ismej.2013.243. PubMed DOI PMC
Klatt CG, Bryant DA, Ward DM. Comparative genomics provides evidence for the 3-hydroxypropionate autotrophic pathway in filamentous anoxygenic phototrophic bacteria and in hot spring microbial mats. Environ Microbiol. 2007;9:2067–78. doi: 10.1111/j.1462-2920.2007.01323.x. PubMed DOI
Thiel V, Hamilton TL, Tomsho LP, Burhans R, Gay SE, Schuster SC, et al. Draft genome sequence of a sulfide-oxidizing, autotrophic filamentous anoxygenic phototrophic bacterium, Chloroflexus sp. strain MS-G (Chloroflexi) Genome Announc. 2014;2:9–10. PubMed PMC
Wu D, Raymond J, Wu M, Chatterji S, Ren Q, Graham JE, et al. Complete genome sequence of the aerobic CO-oxidizing thermophile Thermomicrobium roseum. PLoS ONE. 2009;4:e4207. doi: 10.1371/journal.pone.0004207. PubMed DOI PMC
Hemp J, Ward LM, Pace LA, Fischer W. Draft genome sequence of Levilinea saccharolytica KIBI-1, a member of the chloroflexi class Anaerolineae. Genome Announc 2015;3:2618. PubMed PMC
Hugenholtz P, Stackebrandt E. Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description) Int J Syst Evol Microbiol. 2004;54:2049–51. doi: 10.1099/ijs.0.03028-0. PubMed DOI
Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y. Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain bacteria at the subphylum level. Int J Syst Evol Microbiol. 2003;53:1843–51. doi: 10.1099/ijs.0.02699-0. PubMed DOI
Jackson TJ, Ramaley RF, Meinschein WG. Thermomicrobium, a new genus of extremely thermophilic bacteria. Int J Syst Bacteriol. 1973;23:28–36. doi: 10.1099/00207713-23-1-28. DOI
Van De Meene AML, Olson TL, Collins AM, Blankenship RE. Initial characterization of the photosynthetic apparatus of ‘Candidatus Chlorothrix halophila,’ a filamentous, anoxygenic photoautotroph. J Bacteriol. 2007;189:4196–203. doi: 10.1128/JB.01711-06. PubMed DOI PMC
Sorokin DY, Lücker S, Vejmelkova D, Kostrikina Na, Kleerebezem R, Rijpstra WIC, et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 2012;6:2245–56. doi: 10.1038/ismej.2012.70. PubMed DOI PMC
Sorokin DY, Vejmelkova D, Lücker S, Streshinskaya GM, Rijpstra WIC, Sinninghe Damsté JS, et al. Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi. Int J Syst Evol Microbiol. 2014;64:1859–65. doi: 10.1099/ijs.0.062232-0. PubMed DOI
Kiss H, Nett M, Domin N, Martin K, Maresca JA, Copeland A, et al. Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95T) Stand Genom Sci. 2011;5:356–70. doi: 10.4056/sigs.2194987. PubMed DOI PMC
Yan J, Rash BA, Rainey FA, Moe WM. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environ Microbiol. 2009;11:833–43. doi: 10.1111/j.1462-2920.2008.01804.x. PubMed DOI
Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, et al. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and famil. Int J Syst Evol Microbiol. 2013;63:625–35. doi: 10.1099/ijs.0.034926-0. PubMed DOI
Cavaletti L, Monciardini P, Bamonte R, Schumann P, Ronde M, Sosio M, et al. New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Appl Environ Microbiol. 2006;72:4360–9. doi: 10.1128/AEM.00132-06. PubMed DOI PMC
Chang YJ, Land M, Hauser L, Chertkov O, Del Rio TG, Nolan M, et al. Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21) Stand Genom Sci. 2011;5:97–11. doi: 10.4056/sigs.2114901. PubMed DOI PMC
Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science. 2011;333:1296–9. doi: 10.1126/science.1203690. PubMed DOI
Mehrshad M, Amoozegar MA, Ghai R, Shahzadeh Fazeli SA, Rodriguez-Valera F. Genome reconstruction from metagenomic datasets reveals novel microbes in the brackish waters of the Caspian Sea. Appl Environ Microbiol. 2016;82:AEM.03381–15. doi: 10.1128/AEM.03381-15. PubMed DOI PMC
Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucl Acid Res. 2009;37:D141–5. doi: 10.1093/nar/gkn879. PubMed DOI PMC
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1. doi: 10.1093/bioinformatics/btq461. PubMed DOI
Nawrocki E. Structural RNA homology search and alignment using covariance models. Washington University in ST. Louis 2009.
Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J 2015;10:596–608. PubMed PMC
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Ocean plankton. Structure and function of the global ocean microbiome. Science. 2015;348:1261359. doi: 10.1126/science.1261359. PubMed DOI
Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8. doi: 10.1093/bioinformatics/bts174. PubMed DOI
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2014;31:1674–6. doi: 10.1093/bioinformatics/btv033. PubMed DOI
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119. doi: 10.1186/1471-2105-11-119. PubMed DOI PMC
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acid Res. 1997;25:0955–64. doi: 10.1093/nar/25.5.0955. PubMed DOI PMC
Huang Y, Gilna P, Li W. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics. 2009;25:1338–40. doi: 10.1093/bioinformatics/btp161. PubMed DOI PMC
Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 2001;29:22–8. PubMed PMC
Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res 2001;29:41–43. PubMed PMC
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011;7. e1002195, doi: https://doi.org/10.1371/journal.pcbi.1002195. PubMed PMC
Aziz RK, Bartels D, Best Aa, DeJongh M, Disz T, Edwards Ra, et al. The RAST server: rapid annotations using subsystems technology. BMC Genom. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI
Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotech. 2013;31:533–38. doi: 10.1038/nbt.2579. PubMed DOI
Ghai R, Pašić L, Fernández AB, Martin-Cuadrado AB, Mizuno CM, McMahon KD, et al. New abundant microbial groups in aquatic hypersaline environments. Sci Rep. 2011;1:135. doi: 10.1038/srep00135. PubMed DOI PMC
Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7. doi: 10.1038/nature12352. PubMed DOI
Claudel-Renard C, Chevalet C, Faraut T, Kahn D. Enzyme-specific profiles for genome annotation: PRIAM. Nucl Acid Res. 2003;31:6633–9. doi: 10.1093/nar/gkg847. PubMed DOI PMC
Karp PD, Paley S, Romero P. The Pathway Tools software. Bioinformatics. 2002;18:S225–32. doi: 10.1093/bioinformatics/18.suppl_1.S225. PubMed DOI
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402. PubMed PMC
Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA. 2005;102:2567–72. doi: 10.1073/pnas.0409727102. PubMed DOI PMC
Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304. doi: 10.1038/ncomms3304. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acid Res. 2004;32:1792–7. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999;16:1114–16. doi: 10.1093/oxfordjournals.molbev.a026201. DOI
Lassmann T, Sonnhammer ELL. Kalign—an accurate and fast multiple sequence alignment algorithm. BMC Bioinforma. 2005;6:298. doi: 10.1186/1471-2105-6-298. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Raes J, Korbel JO, Lercher MJ, von Mering C, Bork P. Prediction of effective genome size in metagenomic samples. Genome Biol. 2007;8:R10. doi: 10.1186/gb-2007-8-1-r10. PubMed DOI PMC
Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucl Acid Res. 2003;31:371–73. doi: 10.1093/nar/gkg128. PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55. doi: 10.1101/gr.186072.114. PubMed DOI PMC
Haroon MF, Thompson LR, Parks DH, Hugenholtz P, Stingl U. Data descriptor: a catalogue of 136 microbial draft genomes from Red Sea metagenomes. Sci Data 2016;1–6. PubMed PMC
Wang Y, Yang JK, Lee OO, Li TG, Al-Suwailem A, Danchin A, et al. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments. PLoS ONE. 2011;6:e29149. doi: 10.1371/journal.pone.0029149. PubMed DOI PMC
Biderre-petit C, Dugat-bony E, Mege M, Parisot N. Distribution of Dehalococcoidia in the anaerobic deep water of a remote meromictic crater lake and detection of dehalococcoidia -derived reductive dehalogenase homologous genes. PLoS One 2016;11:e0145558. PubMed PMC
Wasmund K, Schreiber L, Lloyd KG, Petersen DG, Schramm A, Stepanauskas R et al. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME J 2014;8:383–97. PubMed PMC
Lee PKH, Cheng D, West KA, Alvarez-Cohen L, He J. Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environ Microbiol. 2013;15:2293–305. doi: 10.1111/1462-2920.12099. PubMed DOI
Poritz M, Schiffmann CL, Hause G, Heinemann U, Seifert J, Jehmlich N, et al. Dehalococcoides mccartyi strain DCMB5 respires a broad spectrum of chlorinated aromatic compounds. Appl Environ Microbiol. 2015;81:587–96. doi: 10.1128/AEM.02597-14. PubMed DOI PMC
Schneidewind U, Haest PJ, Atashgahi S, Maphosa F, Hamonts K, Maesen M, et al. Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources. J Contam Hydrol. 2014;157:25–36. doi: 10.1016/j.jconhyd.2013.10.006. PubMed DOI
Fullerton H, Moyer CL. Comparative single-cell genomics of Chloroflexi from the Okinawa Trough deep-subsurface biosphere. Appl Environ Microbiol. 2016;82:3000–08. doi: 10.1128/AEM.00624-16. PubMed DOI PMC
Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, et al. Revisiting Carbon Flux Through the Ocean’ s Twilight Zone. Science (80-) 2007;316:567–70. doi: 10.1126/science.1137959. PubMed DOI
Hioki N, Kuma K, Morita Y, Sasayama R, Ooki A, Kondo Y, et al. Laterally spreading iron, humic-like dissolved organic matter and nutrients in cold, dense subsurface water of the Arctic Ocean. Sci Rep. 2014;4:6775. doi: 10.1038/srep06775. PubMed DOI PMC
Knauer GA, Martin JH, Bruland KW. Fluxes of particulate carbon, nitrogen, and phosphorus in the upper water column of the northeast Pacific. Deep Sea Res Part A Oceanogr Res Pap. 1979;26:97–108. doi: 10.1016/0198-0149(79)90089-X. DOI
Martin JH, Knauer GA, Karl DM, Broenkow WW. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res Part A Oceanogr Res Pap. 1987;34:267–85. doi: 10.1016/0198-0149(87)90086-0. DOI
Hug La, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome. 2013;1:22. doi: 10.1186/2049-2618-1-22. PubMed DOI PMC
Huxtable RJ. Actions of Taurine. Physiol Rev. 1992;72:101–63. doi: 10.1152/physrev.1992.72.1.101. PubMed DOI
Thus N. Metabolism of Nitrogen and Sulfur. Struct Funct Relationships Prokaryotes 1951;680–20.
Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol. 2010;12:490–500. doi: 10.1111/j.1462-2920.2009.02092.x. PubMed DOI
Williams TJ, Long E, Evans F, Demaere MZ, Lauro FM, Raftery MJ, et al. A metaproteomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 2012;6:1883–900. doi: 10.1038/ismej.2012.28. PubMed DOI PMC
Yoch DC. Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol. 2002;68:5804–15. doi: 10.1128/AEM.68.12.5804-5815.2002. PubMed DOI PMC
Rellinger AN, Kiene RP, del Valle DA, Kieber DJ, Slezak D, Harada H, et al. Occurrence and turnover of DMSP and DMS in deep waters of the Ross Sea, Antarctica. Deep Res Part I Oceanogr Res Pap. 2009;56:686–702. doi: 10.1016/j.dsr.2008.12.010. DOI
Howard EC, Henriksen JR, Buchan A, Reisch CR, Bürgmann H, Welsh R, et al. Flux from the Ocean. Science. 2006;649:649–52. doi: 10.1126/science.1130657. PubMed DOI
Reisch CR, Moran MA, Whitman WB. Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi. J Bacteriol. 2008;190:8018–24. doi: 10.1128/JB.00770-08. PubMed DOI PMC
Friedrich CG 1998. Physiology and genetics of sulfur-oxidizing bacteria. In: Vol. 39. Advances in microbial physiology. Edited by R. K. Poole. San Diego, CA: Academic Press. 1998. p. 235–89. PubMed
Cipollone R, Ascenzi P, Visca P. Common themes and variations in the rhodanese superfamily. IUBMB Life. 2007;59:51–59. doi: 10.1080/15216540701206859. PubMed DOI
Cypionka H, Smock A, Bottcher M. A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiology Letters 1998;166:181–6.
Aussignargues C, Giuliani MC, Infossi P, Lojou E, Guiral M, Giudici-Orticoni MT, et al. Rhodanese functions as sulfur supplier for key enzymes in sulfur energy metabolism. J Biol Chem. 2012;287:19936–48. doi: 10.1074/jbc.M111.324863. PubMed DOI PMC
Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev. 2009;33:999–43. doi: 10.1111/j.1574-6976.2009.00187.x. PubMed DOI
Meyer B, Kuever J. Homology modeling of dissimilatory APS reductases (AprBA) of sulfur-oxidizing and sulfate-reducing prokaryotes. PLoS ONE 2008;3. e1514, doi: https://doi.org/10.1371/journal.pone.0001514. PubMed PMC
Meyer B, Kuevert J. Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5??? -phosphosulfate (APS) reductase from sulfate-reducing prokaryotes—origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology. 2007;153:2026–44. doi: 10.1099/mic.0.2006/003152-0. PubMed DOI
Watanabe T, Kojima H, Fukui M. Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase. Sci Rep. 2016;6:36262. doi: 10.1038/srep36262. PubMed DOI PMC
Deschamps P, Zivanovic Y, Moreira D, Rodriguez-Valera F, López-García P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota. Genome Biol Evol. 2014;6:1549–63. doi: 10.1093/gbe/evu127. PubMed DOI PMC
Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol. 2016;18:159–73. doi: 10.1111/1462-2920.12930. PubMed DOI
Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:1–11. doi: 10.1038/ncomms13219. PubMed DOI PMC
Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the oceans. Ann Rev Mar Sci. 2017;9. PubMed
Smith DP, Nicora CD, Carini P, Lipton MS, Norbeck AD, Smith RD, et al. Proteome remodeling in response to sulfur limitation in ‘Candidatus Pelagibacter ubique’. mSystems. 2016;1:e00068–16. doi: 10.1128/mSystems.00068-16. PubMed DOI PMC
Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature. 2008;452:741–4. doi: 10.1038/nature06776. PubMed DOI
Arístegui J, Gasol JM, Duarte CM, Herndl GJ. Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr. 2009;54:1501–29. doi: 10.4319/lo.2009.54.5.1501. DOI
Asher EC, Dacey JWH, Mills MM, Arrigo KR, Tortell PD. High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice. Geophys Res Lett. 2011;38:1–5. doi: 10.1029/2011GL049712. DOI
Schmidt S, Reigstad M, Belviso S, Wassmann P, Arashkevich E, Stefels J et al. Significance of vertical flux as a sink for surface water DMSP and as a source for the sediment surface in coastal zones of northern Europe. Estuar Coast Shelf Sci 2006;68: 473–88.
Tang K. Functional genomics of anoxygenic green bacteria Chloroflexi Species and evolution of photosynthesis. Biochemistry, Prof. Deniz Ekinci (Ed.), InTech, DOI: 10.5772/32496. Available from: https://www.intechopen.com/books/biochemistry/functional-genomics-of-anoxygenic-green-bacteria-chloroflexi-species-and-evolution-of-photosynthesis 2012.
Curson Andrew R. J., Liu Ji, Bermejo Martínez Ana, Green Robert T., Chan Yohan, Carrión Ornella, Williams Beth T., Zhang Sheng-Hui, Yang Gui-Peng, Bulman Page Philip C., Zhang Xiao-Hua, Todd Jonathan D. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nature Microbiology. 2017;2:17009. doi: 10.1038/nmicrobiol.2017.9. PubMed DOI
Lê S, Josse J, Husson F. FactoMineR : An R Package for Multivariate Analysis. J Stat Softw 2008;25:1–18.
Artificial neural network analysis of microbial diversity in the central and southern Adriatic Sea
Niche-directed evolution modulates genome architecture in freshwater Planctomycetes
Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi