Photoheterotrophy by aerobic anoxygenic bacteria modulates carbon fluxes in a freshwater lake
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
18-14095Y
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
34802055
PubMed Central
PMC8941148
DOI
10.1038/s41396-021-01142-2
PII: 10.1038/s41396-021-01142-2
Knihovny.cz E-zdroje
- MeSH
- aerobní bakterie metabolismus MeSH
- jezera * mikrobiologie MeSH
- koloběh uhlíku MeSH
- mikrobiota * MeSH
- oxid uhličitý metabolismus MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oxid uhličitý MeSH
- uhlík MeSH
Lakes are a significant component of the global carbon cycle. Respiration exceeds net primary production in most freshwater lakes, making them a source of CO2 to the atmosphere. Driven by heterotrophic microorganisms, respiration is assumed to be unaffected by light, thus it is measured in the dark. However, photoheterotrophs, such as aerobic anoxygenic photoheterotrophic (AAP) bacteria that produce ATP via photochemical reactions, substantially reduce respiration in the light. They are an abundant and active component of bacterioplankton, but their photoheterotrophic contribution to microbial community metabolism remains unquantified. We showed that the community respiration rate in a freshwater lake was reduced by 15.2% (95% confidence interval (CI): 6.6-23.8%) in infrared light that is usable by AAP bacteria but not by primary producers. Moreover, significantly higher assimilation rates of glucose (18.1%; 7.8-28.4%), pyruvate (9.5%; 4.2-14.8%), and leucine (5.9%; 0.1-11.6%) were measured in infrared light. At the ecosystem scale, the amount of CO2 from respiration unbalanced by net primary production was by 3.69 × 109 g CO2 lower over these two sampling seasons when measured in the infrared light. Our results demonstrate that dark measurements of microbial activity significantly bias the carbon fluxes, providing a new paradigm for their quantification in aquatic environments.
Centre Algatech Institute of Microbiology Czech Academy of Sciences 37981 Třeboň Czechia
Faculty of Science University of South Bohemia 370 05 České Budějovice Czechia
National Marine Fisheries Research Institute 81 332 Gdynia Poland
Zobrazit více v PubMed
Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr. 2009;54:2298–314.
Maberly SC, Barker PA, Stott AW, De Ville MM. Catchment productivity controls CO2 emissions from lakes. Nat Clim Chang. 2013;3:391–4.
Berggren M, Lapierre J-F, del Giorgio PA. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J. 2012;6:984–93. PubMed PMC
del Giorgio PA, Duarte CM. Respiration in the open ocean. Nature. 2002;420:379–84. PubMed
Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. Bacterial Rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000;289:1902–6. PubMed
Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, et al. Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science. 2001;292:2492–5. PubMed
Koblížek M, Dachev M, Bína D, Nupur, Piwosz K, Kaftan D. Utilization of light energy in phototrophic Gemmatimonadetes. J Photochem Photobio B: Biol. 2020;213:112085. PubMed
Piwosz K, Kaftan D, Dean J, Šetlík J, Koblížek M. Non-linear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae. Environ Microbiol. 2018;20:724–33.. PubMed
Hauruseu D, Koblížek M. Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol. 2012;78:7414–9. PubMed PMC
Cepáková Z, Hrouzek P, Žišková E, Nuyanzina-Boldareva E, Šorf M, Kozlíková-Zapomělová E, et al. High turnover rates of aerobic anoxygenic phototrophs in European freshwater lakes. Environ Microbiol. 2016;18:5063–71.. PubMed
Kolářová E, Medová H, Piwosz K, Koblížek M. Seasonal dynamics of aerobic anoxygenic phototrophs in freshwater lake Vlkov. Folia Microbiol. 2019;64:705–10.. PubMed
Garcia-Chaves MC, Cottrell MT, Kirchman DL, Ruiz-Gonzalez C, del Giorgio PA. Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. ISME J. 2016;10:1579–88. PubMed PMC
Koehler B, Landelius T, Weyhenmeyer GA, Machida N, Tranvik LJ. Sunlight-induced carbon dioxide emissions from inland waters. Glob Biogeochem Cycles. 2014;28:696–711.
Lewis WM. Global primary production of lakes: 19th Baldi Memorial Lecture. Inland Waters. 2011;1:1–28.
Ruiz-González C, Simo R, Sommaruga R, Gasol JM. Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity. Front Microbiol. 2013;4:131. PubMed PMC
Verpoorter C, Kutser T, Seekell DA, Tranvik LJ. A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett. 2014;41:6396–402..
Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–6.
Kopáček J, Hejzlar J. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem. 1993;53:173–83..
Procházková L. Bestimmung der Nitrate im Wasser. Fresenius’ Z für analytische Chem. 1959;167:254–60..
Kopáčkek J, Procházková L. Semi-micro determination of ammonia in water by the rubazoic acid method. Int J Environ Anal Chem. 1993;53:243–8.
Piwosz K, Vrdoljak A, Frenken T, González-Olalla JM, Šantić D, McKay RM, et al. Light and primary production shape bacterial activity and community composition of aerobic anoxygenic phototrophic bacteria in a microcosm experiment. mSphere. 2020;5:e00354–20.. PubMed PMC
Carpenter JH. The Chesapeake Bay Institute. Technique for the Winkler oxygen method. Limnol Oceanogr. 1965;10:141–3.
Allesson L, Strom L, Berggren M. Impact of photochemical processing of DOC on the bacterioplankton respiratory quotient in aquatic ecosystems. Geophys Res Lett. 2016;43:7538–45.
Kirchman D, Knees E, Hodson R. Leucine incorporation and its potential as a measure of protein-synthesis by bacteria in natural aquatic system. Appl Environ Microbiol. 1985;49:599–607. PubMed PMC
Coleman AW. Enhanced detection of bacteria in natural environments by fluorochrone staining of DNA. Limnol Oceanogr. 1980;25:948–51.
Cottrell MT, Mannino A, Kirchman DL. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Appl Environ Microbiol. 2006;72:557–64. PubMed PMC
Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L. Bacterial populations active in metabolism of C-1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol. 2005;71:6885–99. PubMed PMC
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. PubMed PMC
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96. PubMed PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6.. PubMed PMC
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLOS ONE. 2013;8:e61217. PubMed PMC
Wickham H. ggplot2: Elegant graphics for data analysis: Springer-Verlag New York; 2009.
Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev. 2015;39:854–70. PubMed
Yutin N, Suzuki MT, Béjà O. Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl Environ Microbiol. 2005;71:8958–62. PubMed PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7. PubMed PMC
Fish J, Chai B, Wang Q, Sun Y, Brown CT, Tiedje J, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291. PubMed PMC
Andrei A-Ş, Salcher MM, Mehrshad M, Rychtecký P, Znachor P, Ghai R. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. Isme J. 2019;13:1056–71.. PubMed PMC
Mehrshad M, Salcher MM, Okazaki Y, Nakano S-I, Šimek K, Andrei A-S, et al. Hidden in plain sight—highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome. 2018;6:176. PubMed PMC
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996. PubMed
Field A, Miles J, Field Z. Discovering Statistics Using R. London, UK: SAGE Publications Ltd; 2012. p. 993.
Anderson MJ, Legendre P. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J Stat Comput Simul. 1999;62:271–303.
Legendre P, Anderson MJ. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr. 1999;69:1–24.
Anderson MR, Gorley R, Clarke KR. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Plumouth, UK: PRIMER-E; 2008.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. PubMed PMC
Fuhrman JA, Azam F. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters - evaluation and field results. Mar Biol. 1982;66:109–20..
Ruiz-Gonzalez C, Lefort T, Massana R, Simo R, Gasol JM. Diel changes in bulk and single-cell bacterial heterotrophic activity in winter surface waters of the northwestern Mediterranean Sea. Limnol Oceanogr. 2012;57:29–42.
Selyanin V, Hauruseu D, Koblížek M. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs. Photosynthesis Res. 2016;128:35–43. PubMed
Salcher MM, Posch T, Pernthaler J. In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J. 2013;7:896–907. PubMed PMC
Kasalický V, Zeng Y, Piwosz K, Šimek K, Kratochvilová H, Koblížek M. Common presence of aerobic anoxygenic photosynthesis within the genus Limnohabitans. Appl Environ Microbiol. 2018;84:e02116–17. PubMed PMC
Kasalický V, Jezbera J, Hahn MW, Simek K. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. Plos ONE. 2013;8:e58209. PubMed PMC
Ruiz-González C, Garcia-Chaves MC, Ferrera I, Niño-Garcia JP, del Giorgio PA. Taxonomic differences shape the responses of freshwater aerobic anoxygenic phototrophic bacterial communities to light and predation. Mol Ecol. 2020;29:1267–83. PubMed
Fecskeová LK, Piwosz K, Hanusová M, Nedoma J, Znachor P, Koblížek M. Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria. Sci Rep. 2019;9:18766. PubMed PMC
Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM. Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. Isme J. 2018;12:185–98.. PubMed PMC
Sharma AK, Sommerfeld K, Bullerjahn GS, Matteson AR, Wilhelm SW, Jezbera J, et al. Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J. 2009;3:726–37. PubMed
Sharma AK, Zhaxybayeva O, Papke RT, Doolittle WF. Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ Microbiol. 2008;10:1039–56. PubMed
Dwulit-Smith JR, Hamilton JJ, Stevenson DM, He S, Oyserman BO, Moya-Flores F, et al. acI Actinobacteria assemble a functional actinorhodopsin with natively synthesized retinal. Appl Environ Microbiol. 2018;84:e01678–18.. PubMed PMC
Kirchman DL, Hanson TE. Bioenergetics of photoheterotrophic bacteria in the oceans. Environ Microbiol Rep. 2013;5:188–99. PubMed
Zubkov MV, Fuchs BM, Tarran GA, Burkill PH, Amann R. High rate of uptake of organic nitrogen compounds by prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol. 2003;69:1299–304. PubMed PMC
Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci. 2012. 10.1073/pnas.1217107110. PubMed PMC
Phenology and ecological role of aerobic anoxygenic phototrophs in freshwaters
Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake