Genotyping-by-sequencing uncovers a Thinopyrum 4StS·1JvsS Robertsonian translocation linked to multiple stress tolerances in bread wheat

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39724311

Grantová podpora
FK145848 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
TKP2021-NKTA-06 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
COUSIN (Nr. 101135314) HORIZON EUROPE Framework Programme
Bolyai János Research Scholarship (BO/00206/24/4) Magyar Tudományos Akadémia

Odkazy

PubMed 39724311
PubMed Central PMC11671438
DOI 10.1007/s00122-024-04791-x
PII: 10.1007/s00122-024-04791-x
Knihovny.cz E-zdroje

GBS read coverage analysis identified a Robertsonian chromosome from two Thinopyrum subgenomes in wheat, conferring leaf and stripe rust resistance, drought tolerance, and maintaining yield stability. Agropyron glael (GLAEL), a Thinopyrum intermedium × Th. ponticum hybrid, serves as a valuable genetic resource for wheat improvement. Despite its potential, limited knowledge of its chromosome structure and homoeologous relationships with hexaploid wheat (Triticum aestivum) has restricted the full exploitation of GLAEL's genetic diversity in breeding programs. Here, we present the development of a 44-chromosome wheat/GLAEL addition line (GLA7). Multicolor genomic in situ hybridization identified one chromosome arm from the St subgenome of Th. intermedium, while the other arm remained unclassified. Genotyping-by-sequencing (GBS) read coverage analysis revealed a unique Robertsonian translocation between two distinct Thinopyrum subgenomes, identified as 4StS·1JvsS. The GLA7 line demonstrated strong adult plant resistance to both leaf rust and stripe rust under natural and artificial infection conditions. Automated phenotyping of shoot morphological parameters together with leaf relative water content and yield components showed that the GLA7 line exhibited elevated drought tolerance compared to parental wheat genotypes. Three years of field trials showed that GLA7 exhibits similar agronomic performance and yield components to the wheat parents. This unique addition line holds promise for enhancing wheat's tolerance to multiple stresses through the introduction of new resistance genes, as well as its ability to mitigate the effects of temporary water limitation during flowering, all without negatively impacting wheat performance.

Zobrazit více v PubMed

Adhikari J, Chandnani R, Vitrakoti D et al (2023) Comparative transmission genetics of introgressed chromatin in reciprocal advanced backcross populations in PubMed DOI PMC

Adhikari L, Shrestha S, Wu S et al (2022) A high-throughput skim-sequencing approach for genotyping, dosage estimation and identifying translocations. Sci Rep 12:17583. 10.1038/s41598-022-19858-2 PubMed DOI PMC

Ali S, Gladieux P, Leconte M et al (2014) Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen PubMed DOI PMC

Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940. 10.1093/aob/mcf049 PubMed DOI PMC

Arbelaez JD, Moreno LT, Singh N et al (2015) Development and GBS-genotyping of introgression lines (ILs) using two wild species of rice, PubMed DOI PMC

Awlia M, Nigro A, Fajkus J et al (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in PubMed DOI PMC

Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell Environ 31:11–38. 10.1111/j.1365-3040.2007.01727.x PubMed DOI

Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135–148. 10.1007/bf00024010 DOI

Ceoloni C, Kuzmanović L, Gennaro A, et al (2013) Genomes, chromosomes and genes of the wheatgrass genus

Chen Y, Ji J, Kong D et al (2023) Resistance of QYm.nau-2D to wheat yellow mosaic virus was derived from an alien introgression into common wheat. Theor Appl Genet 136:3. 10.1007/s00122-023-04286-1 PubMed DOI

Chernyad’ev II, Monakhova OF (2003) Effects of cytokinin preparations on the pools of pigments and proteins of wheat cultivars differing in their tolerance to water stress. Appl Biochem Microbiol 39:524–531. 10.1023/a:1025413122702 PubMed DOI

Cone AE, Slafer GA, Halloran GM (1995) Effects of moisture stress on leaf appearance, tillering and other aspects of development in DOI

Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid PubMed DOI

Cseh A, Yang C, Hubbart-Edwards S et al (2019) Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of PubMed DOI PMC

Danilova TV, Zhang G, Liu W et al (2017) Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and PubMed DOI

Darko E, Khalil R, Dobi Z et al (2020) Addition of PubMed DOI PMC

Dewey DR (1984) Gene manipulation in plant improvement, 16th stadler genetics symposium. Stadler Genet Symp Ser. 10.1007/978-1-4613-2429-4_9 DOI

Doležel J, Číhalíková J, Lucretti S (1992) A high-yield procedure for isolation of metaphase chromosomes from root tips of PubMed DOI

Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. 10.1371/journal.pone.0019379 PubMed DOI PMC

Fatima F, McCallum BD, Pozniak CJ et al (2020) Identification of new leaf rust resistance loci in wheat and wild relatives by array-based SNP genotyping and association genetics. Front Plant Sci 11:583738. 10.3389/fpls.2020.583738 PubMed DOI PMC

Feng J, Yao F, Wang M et al (2023) Molecular mapping of PubMed DOI

Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomoeologous wheat- PubMed DOI

Friebe B, Jiang J, Raupp WJ et al (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. 10.1007/bf00035277 DOI

Friebe B, Zeller FJ, Mukai Y et al (1992) Characterization of rust-resistant wheat- PubMed DOI

Gao L, Koo D-H, Juliana P et al (2021) The PubMed DOI PMC

Ghazali S, Mirzaghaderi G, Majdi M (2015) Production of a novel Robertsonian translocation from PubMed DOI

Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat ( DOI

Giovenali G, Kuzmanović L, Capoccioni A, Ceoloni C (2023) The response of chromosomally engineered durum wheat- PubMed DOI PMC

Gong B, Chen L, Zhang H et al (2024) Development, identification, and utilization of wheat–tetraploid PubMed DOI

Grewal S, Yang C, Edwards SH et al (2018) Characterisation of PubMed DOI PMC

Guo X, Huang Y, Wang J et al (2023) Development and cytological characterization of wheat– PubMed DOI PMC

Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci 109:E2415–E2423. 10.1073/pnas.1205276109 PubMed DOI PMC

Hoseinzadeh P, Ruge-Wehling B, Schweizer P et al (2020) High resolution mapping of a PubMed DOI PMC

Hou L, Jia J, Zhang X et al (2016) Molecular mapping of the stripe rust resistance gene PubMed DOI

Huang Q, Li X, Chen WQ et al (2014) Genetic mapping of a putative PubMed DOI

Jevtić R, Župunski V, Lalošević M et al (2020) Diversity in susceptibility reactions of winter wheat genotypes to obligate pathogens under fluctuating climatic conditions. Sci Rep 10:19608. 10.1038/s41598-020-76693-z PubMed DOI PMC

Kantarski T, Larson S, Zhang X et al (2017) Development of the first consensus genetic map of intermediate wheatgrass ( PubMed DOI

Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci 101:13554–13559. 10.1073/pnas.0403659101 PubMed DOI PMC

Keilwagen J, Lehnert H, Badaeva ED et al (2023) Finding needles in a haystack: identification of inter-specific introgressions in wheat genebank collections using low-coverage sequencing data. Front Plant Sci 14:1166854. 10.3389/fpls.2023.1166854 PubMed DOI PMC

Khan IA (2000) Molecular and agronomic characterization of wheat- DOI

Kim N-S, Armstrong K, Knott DR (1993) Molecular detection of PubMed DOI

Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. 10.1038/s41587-019-0201-4 PubMed DOI PMC

King J, Dreisigacker S, Reynolds M et al (2024) Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. Glob Chang Biol 30:e17440. 10.1111/gcb.17440 PubMed DOI

King J, Grewal S, Yang C et al (2018) Introgression of PubMed DOI PMC

Ko J-M, Do G-S, Suh D-Y et al (2002) Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. Genome 45:157–164. 10.1139/g01-133 PubMed DOI

Kojima H, Nishio Z, Kobayashi F et al (2015) Identification and validation of a quantitative trait locus associated with wheat yellow mosaic virus pathotype I resistance in a Japanese wheat variety. Plant Breed 134:373–378. 10.1111/pbr.12279 DOI

Kruppa K, Molnár-Láng M (2016) Simultaneous visualization of different genomes (J, JSt and St) in a PubMed DOI PMC

Kruppa K, Türkösi E, Mayer M et al (2016) McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross. J Appl Genet 57:427–437. 10.1007/s13353-016-0343-8 PubMed DOI PMC

Li M, Wang Y, Liu X et al (2021) Molecular cytogenetic identification of a novel wheat- PubMed DOI PMC

Liu J, Chang Z, Zhang X et al (2013) Putative PubMed DOI

Liu W, Nie H, Wang S et al (2005) Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Theor Appl Genet 111:651–657. 10.1007/s00122-005-2012-x PubMed DOI

Liu W, Seifers DL, Qi LL et al (2011) A compensating wheat- DOI

Liu Z, Li D, Zhang X (2007) Genetic relationships among five basic genomes St, E, A, B and D in DOI

Liu Z, Yang F, Wan H et al (2024) Genome architecture of the allotetraploid wild grass Aegilops ventricosa reveals its evolutionary history and contributions to wheat improvement. Plant Commun 5:101131. 10.1016/j.xplc.2024.101131 PubMed DOI PMC

Löve A (1982) Generic evolution of the wheatgrasses. Biol Zentralbl 101:199–212

Lu F, Duan W, Cui Y et al (2022) 2D-DIGE based proteome analysis of wheat- PubMed DOI PMC

Mahelka V, Kopecký D, Paštová L (2011) On the genome constitution and evolution of intermediate wheatgrass ( PubMed DOI PMC

McIntosh R, Dyck P, Green G (1977) Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Crop Pasture Sci 28:37–45. 10.1071/ar9770037 DOI

McIntosh RA, Dubcovsky J, Rogers WJ et al (2020) Catalogue of gene symbols for wheat: 2020 supplement. Annu Wheat Newsl 66:109–128

McNeal F, Konzak C, Smith E, et al (1971) A uniform system for recording and processing cereal research data. Agricultural Research Service bulletin 34–121

Milovanović M, Perović D, Šarić M et al (1998) The Influence of 1BL.1RS Translocation on Technological Quality of Winter Wheat. Céréal Res Commun 26:321–328. 10.1007/bf03543506 DOI

Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90:301–305. 10.1007/bf00027480 DOI

Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence PubMed DOI

Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and its distribution among PubMed DOI

Nishio Z, Kojima H, Hayata A et al (2010) Mapping a gene conferring resistance to Wheat yellow mosaic virus in European winter wheat cultivar ‘Ibis’ ( DOI

Passioura J (1988) Root signals control leaf expansion in wheat seedlings growing in drying soil. Funct Plant Biol 15:687–693. 10.1071/pp9880687 DOI

Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. 10.1371/journal.pone.0032253 PubMed DOI PMC

Procunier J, Townley-Smith T, Fox S, et al (1995) PCR-based RAPD/DGGE markers linked to leaf rust resistance genes

Qiao L, Liu S, Li J et al (2021) Development of sequence-tagged site marker set for identification of J, JS, and St sub-genomes of PubMed DOI PMC

Rayburn AL, Gill BS (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77:253–255. 10.1093/oxfordjournals.jhered.a110231 DOI

Rey M-D, Prieto P (2017) Detection of alien genetic introgressions in bread wheat using dot-blot genomic hybridisation. Mol Breed 37:32. 10.1007/s11032-017-0629-5 PubMed DOI PMC

Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324. 10.1093/oxfordjournals.aob.a087847 DOI

Sears ER (1973)

Shafqat N (2019) Screening of wheat- DOI

Sharma D, Knott DR (1966) The transfer of leaf-rust resistance from DOI

Słowacki P, Piechota U, Radecka-Janusik M, et al (2024) Assessing stripe rust (

Stubbs R, Prescott J, Saari E, Dubin H (1986) Cereal disease methodology manual

Suzuki T, Murai M-N, Hayashi T et al (2015) Resistance to wheat yellow mosaic virus in Madsen wheat is controlled by two major complementary QTLs. Theor Appl Genet 128:1569–1578. 10.1007/s00122-015-2532-y PubMed DOI

Tanaka H, Nabeuchi C, Kurogaki M et al (2017) A novel compensating wheat– PubMed DOI PMC

Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318. 10.1007/s13353-014-0215-z PubMed DOI

Tikhenko N, Haupt M, Fuchs J et al (2024) Major chromosome rearrangements in intergeneric wheat × rye hybrids in compatible and incompatible crosses detected by GBS read coverage analysis. Sci Rep 14:11010. 10.1038/s41598-024-61622-1 PubMed DOI PMC

Tottman DR (1987) The decimal code for the growth stages of cereals, with illustrations. Ann Appl Biol 110:441–454. 10.1111/j.1744-7348.1987.tb03275.x DOI

Tounsi S, Giorgi D, Kuzmanović L et al (2024) Coping with salinity stress: segmental group 7 chromosome introgressions from halophytic PubMed DOI PMC

Tsitsin N (1979) Cytogenetic studies of wheatgrasses and wheat-wheatgrass hybrids. In: Tsitsin N (ed) Problems of distant hybridization (in Russian). Nauka Press, Moscow, pp 48–53

Türkösi E, Ivanizs L, Farkas A et al (2022) Transfer of the PubMed DOI PMC

Türkösi E, Szakács É, Ivanizs L et al (2024) A chromosome arm from PubMed DOI PMC

Vida G, Cséplő M, Gulyás G et al (2011) Effectiveness of major resistance genes and identification of new sources for disease resistance in wheat. Acta Agron Hung 59:241–248. 10.1556/aagr.59.2011.3.7 DOI

Vrána J, Cápal P, Šimková H et al (2016) Flow analysis and sorting of plant chromosomes. Curr Protoc Cytom 78:5.3.1-5.3.43. 10.1002/cpcy.9 PubMed DOI

Wang H, Sun S, Ge W et al (2020a) Horizontal gene transfer of PubMed DOI

Wang RR-C (2011)

Wang RR-C, Li X, Robbins MD et al (2020b) DNA sequence-based mapping and comparative genomics of the St genome of PubMed DOI

Wang Y, Cao Q, Zhang J et al (2020c) Cytogenetic analysis and molecular marker development for a new wheat– PubMed DOI PMC

Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141. 10.1007/s10681-011-0360-y DOI

Witcombe JR, Hollington PA, Howarth CJ et al (2008) Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc B Biol Sci 363:703–716. 10.1098/rstb.2007.2179 PubMed DOI PMC

Wu D, Zhao X, Xie Y et al (2024) Cytogenetic and genomic characterization of a novel wheat-tetraploid PubMed DOI

Xiao J, Chen X, Xu Z et al (2016) Validation and diagnostic marker development for a genetic region associated with wheat yellow mosaic virus resistance. Euphytica 211:91–101. 10.1007/s10681-016-1731-1 DOI

Yang GQ, Chen YM, Wang JP et al (2016) Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants. Plant Methods 12:1–17. 10.1186/s13007-016-0139-1 PubMed DOI PMC

Yang G, Zhang N, Boshoff WHP et al (2023) Identification and introgression of a novel leaf rust resistance gene from PubMed DOI

Yasmeen A, Basra S, Wahid A et al (2013) Improving drought resistance in wheat (

Yingshan D, Xiuling B, Yushi L et al (2004) Molecular characterization of a cryptic wheat- DOI

Yu Z, Wang H, Xu Y et al (2019) Characterization of chromosomal rearrangement in new wheat— DOI

Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421. 10.1111/j.1365-3180.1974.tb01084.x DOI

Zhan H, Li G, Zhang X et al (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene PubMed DOI PMC

Zhang R, Feng X, Wu Y et al (2022) Interactive effects of drought and salt stresses on the growth and physiological characteristics of

Zheng X, Tang C, Han R et al (2020) Identification, characterization, and evaluation of novel stripe rust-resistant wheat– PubMed DOI

Zhu T, Wang L, Rimbert H et al (2021) Optical maps refine the bread wheat PubMed DOI PMC

Zhu Z, Cao Q, Han D et al (2023) Molecular characterization and validation of adult-plant stripe rust resistance gene PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...