Genotyping-by-sequencing uncovers a Thinopyrum 4StS·1JvsS Robertsonian translocation linked to multiple stress tolerances in bread wheat
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FK145848
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
TKP2021-NKTA-06
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
COUSIN (Nr. 101135314)
HORIZON EUROPE Framework Programme
Bolyai János Research Scholarship (BO/00206/24/4)
Magyar Tudományos Akadémia
PubMed
39724311
PubMed Central
PMC11671438
DOI
10.1007/s00122-024-04791-x
PII: 10.1007/s00122-024-04791-x
Knihovny.cz E-zdroje
- MeSH
- Agropyron genetika MeSH
- chromozomy rostlin * genetika MeSH
- fenotyp MeSH
- fyziologický stres * genetika MeSH
- genotyp MeSH
- genotypizační techniky MeSH
- nemoci rostlin * mikrobiologie genetika MeSH
- období sucha MeSH
- odolnost vůči nemocem * genetika MeSH
- pšenice * genetika mikrobiologie růst a vývoj MeSH
- šlechtění rostlin MeSH
- translokace genetická * MeSH
- Publikační typ
- časopisecké články MeSH
GBS read coverage analysis identified a Robertsonian chromosome from two Thinopyrum subgenomes in wheat, conferring leaf and stripe rust resistance, drought tolerance, and maintaining yield stability. Agropyron glael (GLAEL), a Thinopyrum intermedium × Th. ponticum hybrid, serves as a valuable genetic resource for wheat improvement. Despite its potential, limited knowledge of its chromosome structure and homoeologous relationships with hexaploid wheat (Triticum aestivum) has restricted the full exploitation of GLAEL's genetic diversity in breeding programs. Here, we present the development of a 44-chromosome wheat/GLAEL addition line (GLA7). Multicolor genomic in situ hybridization identified one chromosome arm from the St subgenome of Th. intermedium, while the other arm remained unclassified. Genotyping-by-sequencing (GBS) read coverage analysis revealed a unique Robertsonian translocation between two distinct Thinopyrum subgenomes, identified as 4StS·1JvsS. The GLA7 line demonstrated strong adult plant resistance to both leaf rust and stripe rust under natural and artificial infection conditions. Automated phenotyping of shoot morphological parameters together with leaf relative water content and yield components showed that the GLA7 line exhibited elevated drought tolerance compared to parental wheat genotypes. Three years of field trials showed that GLA7 exhibits similar agronomic performance and yield components to the wheat parents. This unique addition line holds promise for enhancing wheat's tolerance to multiple stresses through the introduction of new resistance genes, as well as its ability to mitigate the effects of temporary water limitation during flowering, all without negatively impacting wheat performance.
Zobrazit více v PubMed
Adhikari J, Chandnani R, Vitrakoti D et al (2023) Comparative transmission genetics of introgressed chromatin in reciprocal advanced backcross populations in PubMed DOI PMC
Adhikari L, Shrestha S, Wu S et al (2022) A high-throughput skim-sequencing approach for genotyping, dosage estimation and identifying translocations. Sci Rep 12:17583. 10.1038/s41598-022-19858-2 PubMed DOI PMC
Ali S, Gladieux P, Leconte M et al (2014) Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen PubMed DOI PMC
Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940. 10.1093/aob/mcf049 PubMed DOI PMC
Arbelaez JD, Moreno LT, Singh N et al (2015) Development and GBS-genotyping of introgression lines (ILs) using two wild species of rice, PubMed DOI PMC
Awlia M, Nigro A, Fajkus J et al (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in PubMed DOI PMC
Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell Environ 31:11–38. 10.1111/j.1365-3040.2007.01727.x PubMed DOI
Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135–148. 10.1007/bf00024010 DOI
Ceoloni C, Kuzmanović L, Gennaro A, et al (2013) Genomes, chromosomes and genes of the wheatgrass genus
Chen Y, Ji J, Kong D et al (2023) Resistance of QYm.nau-2D to wheat yellow mosaic virus was derived from an alien introgression into common wheat. Theor Appl Genet 136:3. 10.1007/s00122-023-04286-1 PubMed DOI
Chernyad’ev II, Monakhova OF (2003) Effects of cytokinin preparations on the pools of pigments and proteins of wheat cultivars differing in their tolerance to water stress. Appl Biochem Microbiol 39:524–531. 10.1023/a:1025413122702 PubMed DOI
Cone AE, Slafer GA, Halloran GM (1995) Effects of moisture stress on leaf appearance, tillering and other aspects of development in DOI
Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid PubMed DOI
Cseh A, Yang C, Hubbart-Edwards S et al (2019) Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of PubMed DOI PMC
Danilova TV, Zhang G, Liu W et al (2017) Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and PubMed DOI
Darko E, Khalil R, Dobi Z et al (2020) Addition of PubMed DOI PMC
Dewey DR (1984) Gene manipulation in plant improvement, 16th stadler genetics symposium. Stadler Genet Symp Ser. 10.1007/978-1-4613-2429-4_9 DOI
Doležel J, Číhalíková J, Lucretti S (1992) A high-yield procedure for isolation of metaphase chromosomes from root tips of PubMed DOI
Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. 10.1371/journal.pone.0019379 PubMed DOI PMC
Fatima F, McCallum BD, Pozniak CJ et al (2020) Identification of new leaf rust resistance loci in wheat and wild relatives by array-based SNP genotyping and association genetics. Front Plant Sci 11:583738. 10.3389/fpls.2020.583738 PubMed DOI PMC
Feng J, Yao F, Wang M et al (2023) Molecular mapping of PubMed DOI
Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomoeologous wheat- PubMed DOI
Friebe B, Jiang J, Raupp WJ et al (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. 10.1007/bf00035277 DOI
Friebe B, Zeller FJ, Mukai Y et al (1992) Characterization of rust-resistant wheat- PubMed DOI
Gao L, Koo D-H, Juliana P et al (2021) The PubMed DOI PMC
Ghazali S, Mirzaghaderi G, Majdi M (2015) Production of a novel Robertsonian translocation from PubMed DOI
Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat ( DOI
Giovenali G, Kuzmanović L, Capoccioni A, Ceoloni C (2023) The response of chromosomally engineered durum wheat- PubMed DOI PMC
Gong B, Chen L, Zhang H et al (2024) Development, identification, and utilization of wheat–tetraploid PubMed DOI
Grewal S, Yang C, Edwards SH et al (2018) Characterisation of PubMed DOI PMC
Guo X, Huang Y, Wang J et al (2023) Development and cytological characterization of wheat– PubMed DOI PMC
Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci 109:E2415–E2423. 10.1073/pnas.1205276109 PubMed DOI PMC
Hoseinzadeh P, Ruge-Wehling B, Schweizer P et al (2020) High resolution mapping of a PubMed DOI PMC
Hou L, Jia J, Zhang X et al (2016) Molecular mapping of the stripe rust resistance gene PubMed DOI
Huang Q, Li X, Chen WQ et al (2014) Genetic mapping of a putative PubMed DOI
Jevtić R, Župunski V, Lalošević M et al (2020) Diversity in susceptibility reactions of winter wheat genotypes to obligate pathogens under fluctuating climatic conditions. Sci Rep 10:19608. 10.1038/s41598-020-76693-z PubMed DOI PMC
Kantarski T, Larson S, Zhang X et al (2017) Development of the first consensus genetic map of intermediate wheatgrass ( PubMed DOI
Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci 101:13554–13559. 10.1073/pnas.0403659101 PubMed DOI PMC
Keilwagen J, Lehnert H, Badaeva ED et al (2023) Finding needles in a haystack: identification of inter-specific introgressions in wheat genebank collections using low-coverage sequencing data. Front Plant Sci 14:1166854. 10.3389/fpls.2023.1166854 PubMed DOI PMC
Khan IA (2000) Molecular and agronomic characterization of wheat- DOI
Kim N-S, Armstrong K, Knott DR (1993) Molecular detection of PubMed DOI
Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. 10.1038/s41587-019-0201-4 PubMed DOI PMC
King J, Dreisigacker S, Reynolds M et al (2024) Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. Glob Chang Biol 30:e17440. 10.1111/gcb.17440 PubMed DOI
King J, Grewal S, Yang C et al (2018) Introgression of PubMed DOI PMC
Ko J-M, Do G-S, Suh D-Y et al (2002) Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. Genome 45:157–164. 10.1139/g01-133 PubMed DOI
Kojima H, Nishio Z, Kobayashi F et al (2015) Identification and validation of a quantitative trait locus associated with wheat yellow mosaic virus pathotype I resistance in a Japanese wheat variety. Plant Breed 134:373–378. 10.1111/pbr.12279 DOI
Kruppa K, Molnár-Láng M (2016) Simultaneous visualization of different genomes (J, JSt and St) in a PubMed DOI PMC
Kruppa K, Türkösi E, Mayer M et al (2016) McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross. J Appl Genet 57:427–437. 10.1007/s13353-016-0343-8 PubMed DOI PMC
Li M, Wang Y, Liu X et al (2021) Molecular cytogenetic identification of a novel wheat- PubMed DOI PMC
Liu J, Chang Z, Zhang X et al (2013) Putative PubMed DOI
Liu W, Nie H, Wang S et al (2005) Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Theor Appl Genet 111:651–657. 10.1007/s00122-005-2012-x PubMed DOI
Liu W, Seifers DL, Qi LL et al (2011) A compensating wheat- DOI
Liu Z, Li D, Zhang X (2007) Genetic relationships among five basic genomes St, E, A, B and D in DOI
Liu Z, Yang F, Wan H et al (2024) Genome architecture of the allotetraploid wild grass Aegilops ventricosa reveals its evolutionary history and contributions to wheat improvement. Plant Commun 5:101131. 10.1016/j.xplc.2024.101131 PubMed DOI PMC
Löve A (1982) Generic evolution of the wheatgrasses. Biol Zentralbl 101:199–212
Lu F, Duan W, Cui Y et al (2022) 2D-DIGE based proteome analysis of wheat- PubMed DOI PMC
Mahelka V, Kopecký D, Paštová L (2011) On the genome constitution and evolution of intermediate wheatgrass ( PubMed DOI PMC
McIntosh R, Dyck P, Green G (1977) Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Crop Pasture Sci 28:37–45. 10.1071/ar9770037 DOI
McIntosh RA, Dubcovsky J, Rogers WJ et al (2020) Catalogue of gene symbols for wheat: 2020 supplement. Annu Wheat Newsl 66:109–128
McNeal F, Konzak C, Smith E, et al (1971) A uniform system for recording and processing cereal research data. Agricultural Research Service bulletin 34–121
Milovanović M, Perović D, Šarić M et al (1998) The Influence of 1BL.1RS Translocation on Technological Quality of Winter Wheat. Céréal Res Commun 26:321–328. 10.1007/bf03543506 DOI
Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90:301–305. 10.1007/bf00027480 DOI
Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence PubMed DOI
Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and its distribution among PubMed DOI
Nishio Z, Kojima H, Hayata A et al (2010) Mapping a gene conferring resistance to Wheat yellow mosaic virus in European winter wheat cultivar ‘Ibis’ ( DOI
Passioura J (1988) Root signals control leaf expansion in wheat seedlings growing in drying soil. Funct Plant Biol 15:687–693. 10.1071/pp9880687 DOI
Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. 10.1371/journal.pone.0032253 PubMed DOI PMC
Procunier J, Townley-Smith T, Fox S, et al (1995) PCR-based RAPD/DGGE markers linked to leaf rust resistance genes
Qiao L, Liu S, Li J et al (2021) Development of sequence-tagged site marker set for identification of J, JS, and St sub-genomes of PubMed DOI PMC
Rayburn AL, Gill BS (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77:253–255. 10.1093/oxfordjournals.jhered.a110231 DOI
Rey M-D, Prieto P (2017) Detection of alien genetic introgressions in bread wheat using dot-blot genomic hybridisation. Mol Breed 37:32. 10.1007/s11032-017-0629-5 PubMed DOI PMC
Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324. 10.1093/oxfordjournals.aob.a087847 DOI
Sears ER (1973)
Shafqat N (2019) Screening of wheat- DOI
Sharma D, Knott DR (1966) The transfer of leaf-rust resistance from DOI
Słowacki P, Piechota U, Radecka-Janusik M, et al (2024) Assessing stripe rust (
Stubbs R, Prescott J, Saari E, Dubin H (1986) Cereal disease methodology manual
Suzuki T, Murai M-N, Hayashi T et al (2015) Resistance to wheat yellow mosaic virus in Madsen wheat is controlled by two major complementary QTLs. Theor Appl Genet 128:1569–1578. 10.1007/s00122-015-2532-y PubMed DOI
Tanaka H, Nabeuchi C, Kurogaki M et al (2017) A novel compensating wheat– PubMed DOI PMC
Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318. 10.1007/s13353-014-0215-z PubMed DOI
Tikhenko N, Haupt M, Fuchs J et al (2024) Major chromosome rearrangements in intergeneric wheat × rye hybrids in compatible and incompatible crosses detected by GBS read coverage analysis. Sci Rep 14:11010. 10.1038/s41598-024-61622-1 PubMed DOI PMC
Tottman DR (1987) The decimal code for the growth stages of cereals, with illustrations. Ann Appl Biol 110:441–454. 10.1111/j.1744-7348.1987.tb03275.x DOI
Tounsi S, Giorgi D, Kuzmanović L et al (2024) Coping with salinity stress: segmental group 7 chromosome introgressions from halophytic PubMed DOI PMC
Tsitsin N (1979) Cytogenetic studies of wheatgrasses and wheat-wheatgrass hybrids. In: Tsitsin N (ed) Problems of distant hybridization (in Russian). Nauka Press, Moscow, pp 48–53
Türkösi E, Ivanizs L, Farkas A et al (2022) Transfer of the PubMed DOI PMC
Türkösi E, Szakács É, Ivanizs L et al (2024) A chromosome arm from PubMed DOI PMC
Vida G, Cséplő M, Gulyás G et al (2011) Effectiveness of major resistance genes and identification of new sources for disease resistance in wheat. Acta Agron Hung 59:241–248. 10.1556/aagr.59.2011.3.7 DOI
Vrána J, Cápal P, Šimková H et al (2016) Flow analysis and sorting of plant chromosomes. Curr Protoc Cytom 78:5.3.1-5.3.43. 10.1002/cpcy.9 PubMed DOI
Wang H, Sun S, Ge W et al (2020a) Horizontal gene transfer of PubMed DOI
Wang RR-C (2011)
Wang RR-C, Li X, Robbins MD et al (2020b) DNA sequence-based mapping and comparative genomics of the St genome of PubMed DOI
Wang Y, Cao Q, Zhang J et al (2020c) Cytogenetic analysis and molecular marker development for a new wheat– PubMed DOI PMC
Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141. 10.1007/s10681-011-0360-y DOI
Witcombe JR, Hollington PA, Howarth CJ et al (2008) Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc B Biol Sci 363:703–716. 10.1098/rstb.2007.2179 PubMed DOI PMC
Wu D, Zhao X, Xie Y et al (2024) Cytogenetic and genomic characterization of a novel wheat-tetraploid PubMed DOI
Xiao J, Chen X, Xu Z et al (2016) Validation and diagnostic marker development for a genetic region associated with wheat yellow mosaic virus resistance. Euphytica 211:91–101. 10.1007/s10681-016-1731-1 DOI
Yang GQ, Chen YM, Wang JP et al (2016) Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants. Plant Methods 12:1–17. 10.1186/s13007-016-0139-1 PubMed DOI PMC
Yang G, Zhang N, Boshoff WHP et al (2023) Identification and introgression of a novel leaf rust resistance gene from PubMed DOI
Yasmeen A, Basra S, Wahid A et al (2013) Improving drought resistance in wheat (
Yingshan D, Xiuling B, Yushi L et al (2004) Molecular characterization of a cryptic wheat- DOI
Yu Z, Wang H, Xu Y et al (2019) Characterization of chromosomal rearrangement in new wheat— DOI
Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421. 10.1111/j.1365-3180.1974.tb01084.x DOI
Zhan H, Li G, Zhang X et al (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene PubMed DOI PMC
Zhang R, Feng X, Wu Y et al (2022) Interactive effects of drought and salt stresses on the growth and physiological characteristics of
Zheng X, Tang C, Han R et al (2020) Identification, characterization, and evaluation of novel stripe rust-resistant wheat– PubMed DOI
Zhu T, Wang L, Rimbert H et al (2021) Optical maps refine the bread wheat PubMed DOI PMC
Zhu Z, Cao Q, Han D et al (2023) Molecular characterization and validation of adult-plant stripe rust resistance gene PubMed DOI