Genotyping-by-sequencing uncovers a Thinopyrum 4StS·1JvsS Robertsonian translocation linked to multiple stress tolerances in bread wheat

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39724311

Grantová podpora
FK145848 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
TKP2021-NKTA-06 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
COUSIN (Nr. 101135314) HORIZON EUROPE Framework Programme
Bolyai János Research Scholarship (BO/00206/24/4) Magyar Tudományos Akadémia

Odkazy

PubMed 39724311
PubMed Central PMC11671438
DOI 10.1007/s00122-024-04791-x
PII: 10.1007/s00122-024-04791-x
Knihovny.cz E-zdroje

GBS read coverage analysis identified a Robertsonian chromosome from two Thinopyrum subgenomes in wheat, conferring leaf and stripe rust resistance, drought tolerance, and maintaining yield stability. Agropyron glael (GLAEL), a Thinopyrum intermedium × Th. ponticum hybrid, serves as a valuable genetic resource for wheat improvement. Despite its potential, limited knowledge of its chromosome structure and homoeologous relationships with hexaploid wheat (Triticum aestivum) has restricted the full exploitation of GLAEL's genetic diversity in breeding programs. Here, we present the development of a 44-chromosome wheat/GLAEL addition line (GLA7). Multicolor genomic in situ hybridization identified one chromosome arm from the St subgenome of Th. intermedium, while the other arm remained unclassified. Genotyping-by-sequencing (GBS) read coverage analysis revealed a unique Robertsonian translocation between two distinct Thinopyrum subgenomes, identified as 4StS·1JvsS. The GLA7 line demonstrated strong adult plant resistance to both leaf rust and stripe rust under natural and artificial infection conditions. Automated phenotyping of shoot morphological parameters together with leaf relative water content and yield components showed that the GLA7 line exhibited elevated drought tolerance compared to parental wheat genotypes. Three years of field trials showed that GLA7 exhibits similar agronomic performance and yield components to the wheat parents. This unique addition line holds promise for enhancing wheat's tolerance to multiple stresses through the introduction of new resistance genes, as well as its ability to mitigate the effects of temporary water limitation during flowering, all without negatively impacting wheat performance.

Zobrazit více v PubMed

Adhikari J, Chandnani R, Vitrakoti D et al (2023) Comparative transmission genetics of introgressed chromatin in reciprocal advanced backcross populations in Gossypium (cotton) polyploids. Heredity 130:209–222. 10.1038/s41437-023-00594-w PubMed PMC

Adhikari L, Shrestha S, Wu S et al (2022) A high-throughput skim-sequencing approach for genotyping, dosage estimation and identifying translocations. Sci Rep 12:17583. 10.1038/s41598-022-19858-2 PubMed PMC

Ali S, Gladieux P, Leconte M et al (2014) Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathog 10:e1003903. 10.1371/journal.ppat.1003903 PubMed PMC

Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940. 10.1093/aob/mcf049 PubMed PMC

Arbelaez JD, Moreno LT, Singh N et al (2015) Development and GBS-genotyping of introgression lines (ILs) using two wild species of rice, O. meridionalis and O. rufipogon, in a common recurrent parent O. sativa cv. Curinga. Mol Breed 35:81. 10.1007/s11032-015-0276-7 PubMed PMC

Awlia M, Nigro A, Fajkus J et al (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front Plant Sci 7:1414. 10.3389/fpls.2016.01414 PubMed PMC

Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell Environ 31:11–38. 10.1111/j.1365-3040.2007.01727.x PubMed

Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135–148. 10.1007/bf00024010

Ceoloni C, Kuzmanović L, Gennaro A, et al (2013) Genomes, chromosomes and genes of the wheatgrass genus Thinopyrum: the value of their transfer into wheat for gains in cytogenomic knowledge and sustainable breeding. Springer, Dordrecht, pp 333–358. 10.1007/978-94-007-7575-6_14

Chen Y, Ji J, Kong D et al (2023) Resistance of QYm.nau-2D to wheat yellow mosaic virus was derived from an alien introgression into common wheat. Theor Appl Genet 136:3. 10.1007/s00122-023-04286-1 PubMed

Chernyad’ev II, Monakhova OF (2003) Effects of cytokinin preparations on the pools of pigments and proteins of wheat cultivars differing in their tolerance to water stress. Appl Biochem Microbiol 39:524–531. 10.1023/a:1025413122702 PubMed

Cone AE, Slafer GA, Halloran GM (1995) Effects of moisture stress on leaf appearance, tillering and other aspects of development in Triticum tauschii. Euphytica 86:55–64. 10.1007/bf00035939

Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 109:34–42. 10.1159/000082379 PubMed

Cseh A, Yang C, Hubbart-Edwards S et al (2019) Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of Thinopyrym intermedium in a wheat background. Theor Appl Genet 132:1555–1570. 10.1007/s00122-019-03300-9 PubMed PMC

Danilova TV, Zhang G, Liu W et al (2017) Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor Appl Genet 130:549–556. 10.1007/s00122-016-2834-8 PubMed

Darko E, Khalil R, Dobi Z et al (2020) Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci Rep 10:22327. 10.1038/s41598-020-79372-1 PubMed PMC

Dewey DR (1984) Gene manipulation in plant improvement, 16th stadler genetics symposium. Stadler Genet Symp Ser. 10.1007/978-1-4613-2429-4_9

Doležel J, Číhalíková J, Lucretti S (1992) A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188:93–98. 10.1007/bf00198944 PubMed

Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. 10.1371/journal.pone.0019379 PubMed PMC

Fatima F, McCallum BD, Pozniak CJ et al (2020) Identification of new leaf rust resistance loci in wheat and wild relatives by array-based SNP genotyping and association genetics. Front Plant Sci 11:583738. 10.3389/fpls.2020.583738 PubMed PMC

Feng J, Yao F, Wang M et al (2023) Molecular mapping of Yr85 and comparison with other genes for resistance to stripe rust on wheat chromosome 1B. Plant Dis 107:3585–3591. 10.1094/pdis-11-22-2600-re PubMed

Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor Appl Genet 86:141–149. 10.1007/bf00222072 PubMed

Friebe B, Jiang J, Raupp WJ et al (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. 10.1007/bf00035277

Friebe B, Zeller FJ, Mukai Y et al (1992) Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782. 10.1007/bf00226697 PubMed

Gao L, Koo D-H, Juliana P et al (2021) The Aegilops ventricosa 2NvS segment in bread wheat: cytology, genomics and breeding. Theor Appl Genet 134:529–542. 10.1007/s00122-020-03712-y PubMed PMC

Ghazali S, Mirzaghaderi G, Majdi M (2015) Production of a novel Robertsonian translocation from Thinopyrum bessarabicum into bread wheat. Cytol Genet 49:378–381. 10.3103/s0095452715060031 PubMed

Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839. 10.1139/g91-128

Giovenali G, Kuzmanović L, Capoccioni A, Ceoloni C (2023) The response of chromosomally engineered durum wheat-Thinopyrum ponticum recombinant lines to the application of heat and water-deficit stresses: effects on physiological, biochemical and yield-related traits. Plants 12:704. 10.3390/plants12040704 PubMed PMC

Gong B, Chen L, Zhang H et al (2024) Development, identification, and utilization of wheat–tetraploid Thinopyrum elongatum 4EL translocation lines resistant to stripe rust. Theor Appl Genet 137:17. 10.1007/s00122-023-04525-5 PubMed

Grewal S, Yang C, Edwards SH et al (2018) Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theor Appl Genet 131:389–406. 10.1007/s00122-017-3009-y PubMed PMC

Guo X, Huang Y, Wang J et al (2023) Development and cytological characterization of wheat–Thinopyrum intermedium translocation lines with novel stripe rust resistance gene. Front Plant Sci 14:1135321. 10.3389/fpls.2023.1135321 PubMed PMC

Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci 109:E2415–E2423. 10.1073/pnas.1205276109 PubMed PMC

Hoseinzadeh P, Ruge-Wehling B, Schweizer P et al (2020) High resolution mapping of a Hordeum bulbosum-derived powdery mildew resistance locus in barley using distinct homologous introgression lines. Front Plant Sci 11:225. 10.3389/fpls.2020.00225 PubMed PMC

Hou L, Jia J, Zhang X et al (2016) Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Dis 100:1717–1724. 10.1094/pdis-05-15-0555-re PubMed

Huang Q, Li X, Chen WQ et al (2014) Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet 127:843–853. 10.1007/s00122-014-2261-7 PubMed

Jevtić R, Župunski V, Lalošević M et al (2020) Diversity in susceptibility reactions of winter wheat genotypes to obligate pathogens under fluctuating climatic conditions. Sci Rep 10:19608. 10.1038/s41598-020-76693-z PubMed PMC

Kantarski T, Larson S, Zhang X et al (2017) Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing. Theor Appl Genet 130:137–150. 10.1007/s00122-016-2799-7 PubMed

Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci 101:13554–13559. 10.1073/pnas.0403659101 PubMed PMC

Keilwagen J, Lehnert H, Badaeva ED et al (2023) Finding needles in a haystack: identification of inter-specific introgressions in wheat genebank collections using low-coverage sequencing data. Front Plant Sci 14:1166854. 10.3389/fpls.2023.1166854 PubMed PMC

Khan IA (2000) Molecular and agronomic characterization of wheat-Agropyron intermedium recombinant chromosomes. Plant Breed 119:25–29. 10.1046/j.1439-0523.2000.00440.x

Kim N-S, Armstrong K, Knott DR (1993) Molecular detection of Lophopyrum chromatin in wheat-Lophopyrum recombinants and their use in the physical mapping of chromosome 7D. Theor Appl Genet 85:561–567. 10.1007/bf00220914 PubMed

Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. 10.1038/s41587-019-0201-4 PubMed PMC

King J, Dreisigacker S, Reynolds M et al (2024) Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. Glob Chang Biol 30:e17440. 10.1111/gcb.17440 PubMed

King J, Grewal S, Yang C et al (2018) Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Ann Bot 121:229–240. 10.1093/aob/mcx149 PubMed PMC

Ko J-M, Do G-S, Suh D-Y et al (2002) Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. Genome 45:157–164. 10.1139/g01-133 PubMed

Kojima H, Nishio Z, Kobayashi F et al (2015) Identification and validation of a quantitative trait locus associated with wheat yellow mosaic virus pathotype I resistance in a Japanese wheat variety. Plant Breed 134:373–378. 10.1111/pbr.12279

Kruppa K, Molnár-Láng M (2016) Simultaneous visualization of different genomes (J, JSt and St) in a Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid (Poaceae) and in its parental species by multicolour genomic in situ hybridization (mcGISH). Comp Cytogenet 10:283–293. 10.3897/compcytogen.v10i2.7305 PubMed PMC

Kruppa K, Türkösi E, Mayer M et al (2016) McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross. J Appl Genet 57:427–437. 10.1007/s13353-016-0343-8 PubMed PMC

Li M, Wang Y, Liu X et al (2021) Molecular cytogenetic identification of a novel wheat-Thinopyrum ponticum 1JS (1B) substitution line resistant to powdery mildew and leaf rust. Front Plant Sci 12:727734. 10.3389/fpls.2021.727734 PubMed PMC

Liu J, Chang Z, Zhang X et al (2013) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126:265–274. 10.1007/s00122-012-1979-3 PubMed

Liu W, Nie H, Wang S et al (2005) Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Theor Appl Genet 111:651–657. 10.1007/s00122-005-2012-x PubMed

Liu W, Seifers DL, Qi LL et al (2011) A compensating wheat-Thinopyrum intermedium robertsonian translocation conferring resistance to wheat streak mosaic virus and triticum mosaic virus. Crop Sci 51:2382–2390. 10.2135/cropsci2011.03.0118

Liu Z, Li D, Zhang X (2007) Genetic relationships among five basic genomes St, E, A, B and D in Triticeae revealed by genomic southern and in situ hybridization. J Integr Plant Biol 49:1080–1086. 10.1111/j.1672-9072.2007.00462.x

Liu Z, Yang F, Wan H et al (2024) Genome architecture of the allotetraploid wild grass Aegilops ventricosa reveals its evolutionary history and contributions to wheat improvement. Plant Commun 5:101131. 10.1016/j.xplc.2024.101131 PubMed PMC

Löve A (1982) Generic evolution of the wheatgrasses. Biol Zentralbl 101:199–212

Lu F, Duan W, Cui Y et al (2022) 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress. BMC Genom 23:369. 10.1186/s12864-022-08599-1 PubMed PMC

Mahelka V, Kopecký D, Paštová L (2011) On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae). BMC Evol Biol 11:127. 10.1186/1471-2148-11-127 PubMed PMC

McIntosh R, Dyck P, Green G (1977) Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Crop Pasture Sci 28:37–45. 10.1071/ar9770037

McIntosh RA, Dubcovsky J, Rogers WJ et al (2020) Catalogue of gene symbols for wheat: 2020 supplement. Annu Wheat Newsl 66:109–128

McNeal F, Konzak C, Smith E, et al (1971) A uniform system for recording and processing cereal research data. Agricultural Research Service bulletin 34–121

Milovanović M, Perović D, Šarić M et al (1998) The Influence of 1BL.1RS Translocation on Technological Quality of Winter Wheat. Céréal Res Commun 26:321–328. 10.1007/bf03543506

Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90:301–305. 10.1007/bf00027480

Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494. 10.1139/g93-067 PubMed

Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38:479–486. 10.1139/g95-063 PubMed

Nishio Z, Kojima H, Hayata A et al (2010) Mapping a gene conferring resistance to Wheat yellow mosaic virus in European winter wheat cultivar ‘Ibis’ (Triticum aestivum L.). Euphytica 176:223–229. 10.1007/s10681-010-0229-5

Passioura J (1988) Root signals control leaf expansion in wheat seedlings growing in drying soil. Funct Plant Biol 15:687–693. 10.1071/pp9880687

Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. 10.1371/journal.pone.0032253 PubMed PMC

Procunier J, Townley-Smith T, Fox S, et al (1995) PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.)

Qiao L, Liu S, Li J et al (2021) Development of sequence-tagged site marker set for identification of J, JS, and St sub-genomes of Thinopyrum intermedium in wheat background. Front Plant Sci 12:685216. 10.3389/fpls.2021.685216 PubMed PMC

Rayburn AL, Gill BS (1986) Molecular identification of the D-genome chromosomes of wheat. J Hered 77:253–255. 10.1093/oxfordjournals.jhered.a110231

Rey M-D, Prieto P (2017) Detection of alien genetic introgressions in bread wheat using dot-blot genomic hybridisation. Mol Breed 37:32. 10.1007/s11032-017-0629-5 PubMed PMC

Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324. 10.1093/oxfordjournals.aob.a087847

Sears ER (1973) Agropyron-wheat transfers induced by homoeologous pairing. In: Sears ER, Sears LMS (eds) Proceedings of the fourth international wheat genetics symposium. Alien genetic material. pp 191–199

Shafqat N (2019) Screening of wheat-thinopyrum bessarabicum addition and translocation lines for drought tolerance. Appl Ecol Environ Res. 10.15666/aeer/1705_1044510461

Sharma D, Knott DR (1966) The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143. 10.1139/g66-018

Słowacki P, Piechota U, Radecka-Janusik M, et al (2024) Assessing stripe rust (Puccinia striiformis f. sp. tritici) population structure in Poland in 2023. In: U L, A B (eds) Book of Abstracts EUCARPIA General Congress. p 157

Stubbs R, Prescott J, Saari E, Dubin H (1986) Cereal disease methodology manual

Suzuki T, Murai M-N, Hayashi T et al (2015) Resistance to wheat yellow mosaic virus in Madsen wheat is controlled by two major complementary QTLs. Theor Appl Genet 128:1569–1578. 10.1007/s00122-015-2532-y PubMed

Tanaka H, Nabeuchi C, Kurogaki M et al (2017) A novel compensating wheat–Thinopyrum elongatum Robertsonian translocation line with a positive effect on flour quality. Breed Sci 67:17058. 10.1270/jsbbs.17058 PubMed PMC

Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318. 10.1007/s13353-014-0215-z PubMed

Tikhenko N, Haupt M, Fuchs J et al (2024) Major chromosome rearrangements in intergeneric wheat × rye hybrids in compatible and incompatible crosses detected by GBS read coverage analysis. Sci Rep 14:11010. 10.1038/s41598-024-61622-1 PubMed PMC

Tottman DR (1987) The decimal code for the growth stages of cereals, with illustrations. Ann Appl Biol 110:441–454. 10.1111/j.1744-7348.1987.tb03275.x

Tounsi S, Giorgi D, Kuzmanović L et al (2024) Coping with salinity stress: segmental group 7 chromosome introgressions from halophytic Thinopyrum species greatly enhance tolerance of recipient durum wheat. Front Plant Sci 15:1378186. 10.3389/fpls.2024.1378186 PubMed PMC

Tsitsin N (1979) Cytogenetic studies of wheatgrasses and wheat-wheatgrass hybrids. In: Tsitsin N (ed) Problems of distant hybridization (in Russian). Nauka Press, Moscow, pp 48–53

Türkösi E, Ivanizs L, Farkas A et al (2022) Transfer of the ph1b deletion chromosome 5B from chinese spring wheat into a winter wheat line and induction of chromosome rearrangements in wheat-aegilops biuncialis hybrids. Front Plant Sci 13:875676. 10.3389/fpls.2022.875676 PubMed PMC

Türkösi E, Szakács É, Ivanizs L et al (2024) A chromosome arm from Thinopyrum intermedium × Thinopyrum ponticum hybrid confers increased tillering and yield potential in wheat. Mol Breed 44:7. 10.1007/s11032-024-01439-y PubMed PMC

Vida G, Cséplő M, Gulyás G et al (2011) Effectiveness of major resistance genes and identification of new sources for disease resistance in wheat. Acta Agron Hung 59:241–248. 10.1556/aagr.59.2011.3.7

Vrána J, Cápal P, Šimková H et al (2016) Flow analysis and sorting of plant chromosomes. Curr Protoc Cytom 78:5.3.1-5.3.43. 10.1002/cpcy.9 PubMed

Wang H, Sun S, Ge W et al (2020a) Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science. 10.1126/science.aba5435 PubMed

Wang RR-C (2011) Agropyron and Psathyrostachys. Wild crop relatives: genomic and breeding resources: Cereals. Springer, Berlin, Heidelberg, Berlin, pp 77–108

Wang RR-C, Li X, Robbins MD et al (2020b) DNA sequence-based mapping and comparative genomics of the St genome of Pseudoroegneria spicata (Pursh) Á. Löve versus wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Genome 63:445–457. 10.1139/gen-2019-0152 PubMed

Wang Y, Cao Q, Zhang J et al (2020c) Cytogenetic analysis and molecular marker development for a new wheat–Thinopyrum ponticum 1Js (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Front Plant Sci 11:1282. 10.3389/fpls.2020.01282 PubMed PMC

Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141. 10.1007/s10681-011-0360-y

Witcombe JR, Hollington PA, Howarth CJ et al (2008) Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc B Biol Sci 363:703–716. 10.1098/rstb.2007.2179 PubMed PMC

Wu D, Zhao X, Xie Y et al (2024) Cytogenetic and genomic characterization of a novel wheat-tetraploid Thinopyrum elongatum 1BS⋅1EL translocation line with stripe rust resistance. Plant Dis 108:2065–2072. 10.1094/pdis-12-23-2799-re PubMed

Xiao J, Chen X, Xu Z et al (2016) Validation and diagnostic marker development for a genetic region associated with wheat yellow mosaic virus resistance. Euphytica 211:91–101. 10.1007/s10681-016-1731-1

Yang GQ, Chen YM, Wang JP et al (2016) Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants. Plant Methods 12:1–17. 10.1186/s13007-016-0139-1 PubMed PMC

Yang G, Zhang N, Boshoff WHP et al (2023) Identification and introgression of a novel leaf rust resistance gene from Thinopyrum intermedium chromosome 7Js into wheat. Theor Appl Genet 136:231. 10.1007/s00122-023-04474-z PubMed

Yasmeen A, Basra S, Wahid A et al (2013) Improving drought resistance in wheat (Triticum aestivum) by exogenous application of growth enhancers. Int J Agric Biol 15:1307–1312

Yingshan D, Xiuling B, Yushi L et al (2004) Molecular characterization of a cryptic wheat-Thinopyrum intermedium translocation line: evidence for genomic instability in nascent allopolyploid and aneuploid lines. Genet Mol Biol 27:237–241. 10.1590/s1415-47572004000200018

Yu Z, Wang H, Xu Y et al (2019) Characterization of chromosomal rearrangement in new wheat—Thinopyrum intermedium addition lines carrying Thinopyrum—specific grain hardness genes. Agronomy 9:18. 10.3390/agronomy9010018

Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421. 10.1111/j.1365-3180.1974.tb01084.x

Zhan H, Li G, Zhang X et al (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative Wheat-Thinopyrum ponticum introgression line. PLoS ONE 9:e113455. 10.1371/journal.pone.0113455 PubMed PMC

Zhang R, Feng X, Wu Y et al (2022) Interactive effects of drought and salt stresses on the growth and physiological characteristics of Thinopyrum Ponticum. Chin J Eco-Agric 30:1795–1806

Zheng X, Tang C, Han R et al (2020) Identification, characterization, and evaluation of novel stripe rust-resistant wheat– Thinopyrum intermedium chromosome translocation lines. Plant Dis 104:875–881. 10.1094/pdis-01-19-0001-re PubMed

Zhu T, Wang L, Rimbert H et al (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring Genome Assembly. Plant J 107:303–314. 10.1111/tpj.15289 PubMed PMC

Zhu Z, Cao Q, Han D et al (2023) Molecular characterization and validation of adult-plant stripe rust resistance gene Yr86 in Chinese wheat cultivar Zhongmai 895. Theor Appl Genet 136:142. 10.1007/s00122-023-04374-2 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...