Lipidomic profiling of human serum enables detection of pancreatic cancer
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35013261
PubMed Central
PMC8748654
DOI
10.1038/s41467-021-27765-9
PII: 10.1038/s41467-021-27765-9
Knihovny.cz E-zdroje
- MeSH
- antigen CA-19-9 krev MeSH
- ceramidy krev MeSH
- lidé MeSH
- lipidomika metody MeSH
- lysofosfatidylcholiny krev MeSH
- metabolismus lipidů genetika MeSH
- multivariační analýza MeSH
- nádorové biomarkery krev genetika MeSH
- nádory slinivky břišní krev diagnóza mortalita patologie MeSH
- proporcionální rizikové modely MeSH
- senzitivita a specificita MeSH
- sfingomyeliny krev MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigen CA-19-9 MeSH
- ceramidy MeSH
- lysofosfatidylcholiny MeSH
- nádorové biomarkery MeSH
- sfingomyeliny MeSH
Pancreatic cancer has the worst prognosis among all cancers. Cancer screening of body fluids may improve the survival time prognosis of patients, who are often diagnosed too late at an incurable stage. Several studies report the dysregulation of lipid metabolism in tumor cells, suggesting that changes in the blood lipidome may accompany tumor growth. Here we show that the comprehensive mass spectrometric determination of a wide range of serum lipids reveals statistically significant differences between pancreatic cancer patients and healthy controls, as visualized by multivariate data analysis. Three phases of biomarker discovery research (discovery, qualification, and verification) are applied for 830 samples in total, which shows the dysregulation of some very long chain sphingomyelins, ceramides, and (lyso)phosphatidylcholines. The sensitivity and specificity to diagnose pancreatic cancer are over 90%, which outperforms CA 19-9, especially at an early stage, and is comparable to established diagnostic imaging methods. Furthermore, selected lipid species indicate a potential as prognostic biomarkers.
3rd Department of Internal Medicine 1st Faculty of Medicine Charles University Prague Czech Republic
3rd Faculty of Medicine Charles University Prague Czech Republic
Clinic of Comprehensive Cancer Care Masaryk Memorial Cancer Institute Brno Czech Republic
Department of Analytical Chemistry University of Vienna Vienna Austria
Department of Immunochemistry Diagnostics University Hospital in Pilsen Pilsen Czech Republic
Faculty of Medicine Masaryk University Brno Czech Republic
Palacký University Olomouc Institute of Molecular and Translational Medicine Olomouc Czech Republic
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Hur C, et al. Early pancreatic ductal adenocarcinoma survival is dependent on size positive implications for future targeted screening. Pancreas. 2016;45:1062–1066. PubMed PMC
Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N. Engl. J. Med. 2014;371:1039–1049. PubMed
American cancer society. Cancer treatment & survivorship facts & figures. https://www.cancer.org/research/cancer-facts-statistics/survivor-facts-figures.html (2016–2017).
Toft J, et al. Imaging modalities in the diagnosis of pancreatic adenocarcinoma: A systematic review and meta-analysis of sensitivity, specificity, and diagnostic accuracy. Eur. J. Radiol. 2017;92:17–23. PubMed
Duffy MJ, et al. Tumor markers in pancreatic cancer: a European group on tumor markers (EGTM) status report. Ann. Oncol. 2010;21:441–447. PubMed
Root A, Allen P, Tempst P, Yu K. Protein biomarkers for early detection of pancreatic ductal adenocarcinoma: progress and challenges. Cancers. 2018;10:67–78. PubMed PMC
Cohen JD, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. PubMed PMC
Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis, and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2020;17:153–168. PubMed
Perincheri S, Hui P. KRAS mutation testing in clinical practice. Expert Rev. Mol. Diagn. 2014;15:375–384. PubMed
Shiwei G, et al. Preoperative detection of KRAS G12D mutation in ctDNA is a powerful predictor for early recurrence of resectable PDAC patients. Br. J. Cancer. 2020;122:857–867. PubMed PMC
Patel N, et al. The diagnostic accuracy of mutant KRAS detection from pancreatic secretions for the diagnosis of pancreatic cancer: a meta analysis. Cancers. 2020;12:2353. PubMed PMC
Jones S, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321:1801–1806. PubMed PMC
Bryant K, Mancias J, Kimmelman A, Der C. KRAS: feeding pancreatic cancer proliferation. Trends Biochem. Sci. 2014;39:91–100. PubMed PMC
Kamphorst J, et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA. 2013;110:8882–8887. PubMed PMC
Salloum D, et al. Mutant ras elevates dependence on serum lipids and creates a synthetic lethality for rapamycin. Mol. Cancer Ther. 2014;13:733–741. PubMed PMC
Rozeveld CN, Johnson KM, Zhang L, Razidlo GL. KRAS controls pancreatic cancer cell lipid metabolism and invasive potential through the lipase HSL. Cancer Res. 2020;80:4932–4945. PubMed PMC
Wenk MR. Lipidomics: new tools and applications. Cell. 2010;143:888–895. PubMed
Wolrab D, et al. Oncolipidomics: mass spectrometric quantitation of lipids in cancer research. Trends Anal. Chem. 2019;120:115480.
Cífková E, et al. Correlation of lipidomic composition of cell lines and tissues of breast cancer patients using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry and multivariate data analysis. Rapid Commun. Mass Spectrom. 2017;31:253–263. PubMed
Cífková E, et al. Determination of lipidomic differences between human breast cancer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. Anal. Bioanal. Chem. 2015;407:991–1002. PubMed
Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers: mass spectrometry-based analysis. Mass Spectrom. Rev. 2018;37:107–138. PubMed
Wolrab, D. et al. LipidQuant tool for automated data processing in lipid class separation-mass spectrometry workflows. Bioinformatics, submitted, preprint available at Zenodo: https://zenodo.org/record/4899685#.YNDy10wzUaG (2021). PubMed
Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 2006;24:971–983. PubMed
Wolrab D, et al. Determination of one year stability of lipid plasma profile and comparison of blood collection tubes using UHPSFC/MS and HILIC-UHPLC/MS. Anal. Chim. Acta. 2020;1137:74–84. PubMed
Sales S, et al. Gender, contraceptives and individual metabolic predisposition shape a healthy plasma lipidome. Sci. Rep. 2016;6:27710. PubMed PMC
Wolrab D, et al. Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography-mass spectrometry and hydrophilic interaction liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 2020;412:2375–2388. PubMed
Triebl A, et al. Shared reference materials harmonize lipidomics across MS-based detection platforms and laboratories. J. Lipid Res. 2020;61:105–115. PubMed PMC
Committee for medicinal products for human use (CHMP). Guideline on bioanalytical method validation http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/document_detail.jsp?webContentId=WC500109686%26mid=WC0b01ac058009a3dc (First published 2011, last updated 2015).
US Department of health and human services. Food and drug administration guidance for industry: bioanalytical method validation. (Center for drug evaluation and research: Rockville, MD) https://www.fda.gov/ForIndustry/IndustryNoticesandGuidanceDocuments/default.htm (2001).
Chocholoušková M, et al. Intra-laboratory cross-comparison of four lipidomic quantitation platforms using hydrophilic interaction liquid chromatography vs. supercritical fluid chromatography coupled to two quadrupole—time-of-flight mass spectrometers. Talanta. 2021;231:122367. PubMed
Yen CLE, et al. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 2008;49:2283–2301. PubMed PMC
Cohen JD, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. PubMed PMC
Lennon AM, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science. 2020;369:6499. PubMed PMC
Burla B, et al. MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J. Lipid Res. 2018;59:2001–2017. PubMed PMC
Holčapek M, Liebisch G, Ekroos K. Lipidomic analysis. Anal. Chem. 2018;90:4249–4257. PubMed
Daemen A, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc. Natl Acad. Sci. USA. 2015;112:E4410–E4417. PubMed PMC
van der Hoeven D, et al. Sphingomyelin metabolism is a regulator of K-Ras function. Mol. Cell Biol. 2018;38:e00373–17. PubMed PMC
Liebisch G, et al. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013;54:1523–1530. PubMed PMC
Fahy E, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 2009;50:S9–S14. PubMed PMC
Fahy E, et al. A comprehensive classification system for lipids. J. Lipid Res. 2005;46:839–862. PubMed
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. PubMed
Lísa M, Cífková E, Khalikova M, Ovčačíková M, Holčapek M. Lipidomic analysis of biological samples: Comparison of liquid chromatography, supercritical fluid chromatography, and direct infusion mass spectrometry methods. J. Chromatogr. A. 2017;1525:96–108. PubMed
Cífková E, et al. Lipidomic differentiation between human kidney tumors and surrounding normal tissues using HILIC-HPLC/ESI–MS and multivariate data analysis. J. Chromatogr. B. 2015;1000:14–21. PubMed
Jirásko R, et al. MALDI orbitrap mass spectrometry profiling of dysregulated sulfoglycosphingolipids in renal cell carcinoma tissues. J. Am. Soc. Mass Spectrom. 2017;28:1562–1574. PubMed
Liebisch G, et al. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS) Biochim. Biophys. Acta (BBA) - Mol. Cell Biol. Lipids. 2006;1761:121–128. PubMed
Liebisch G, Lieser B, Rathenberg J, Drobnik W, Schmitz G. High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochim. Biophys. Acta (BBA) - Mol. Cell Biol. Lipids. 2004;1686:108–117. PubMed
Liebisch G, Drobnik W, Lieser B, Schmitz G. High-throughput quantification of lysophosphatidylcholine by electrospray ionization tandem mass spectrometry. Clin. Chem. 2002;48:2217–2224. PubMed
Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008;49:1137–1146. PubMed PMC
Berry KAZ, Murphy RC. Electrospray ionization tandem mass spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. J. Am. Soc. Mass Spectrom. 2004;15:1499–1508. PubMed
Liebisch G, et al. Quantitative measurement of different ceramide species from crude cellular extracts by electrospray ionization tandem mass spectrometry (ESI-MS/MS) J. Lipid Res. 1999;40:1539–1546. PubMed
Höring M, Ejsing CS, Hermansson M, Liebisch G. Quantification of cholfesterol and cholesteryl ester by direct flow injection high-resolution Fourier transform mass spectrometry utilizing species-specific response factors. Anal. Chem. 2019;91:3459–3466. PubMed
Husen P, et al. Analysis of Lipid Experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS One. 2013;8:e79736. PubMed PMC
Chong J, Xia J. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics. 2018;34:4313–4314. PubMed PMC
Ozone-enabled fatty acid discovery reveals unexpected diversity in the human lipidome
Comprehensive characterization of complex glycosphingolipids in human pancreatic cancer tissues
Optimization of Mobile Phase Modifiers for Fast LC-MS-Based Untargeted Metabolomics and Lipidomics
Current Screening Strategies for Pancreatic Cancer
Clinical lipidomics - A community-driven roadmap to translate research into clinical applications