Liquid biopsy of peripheral blood using mass spectrometry detects primary extramedullary disease in multiple myeloma patients

. 2024 Aug 13 ; 14 (1) : 18777. [epub] 20240813

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39138296

Grantová podpora
NU21-03-00076 Ministerstvo Zdravotnictví Ceské Republiky
MUNI/A/1587/2023 Masarykova Univerzita
LX22NPO5102 Next generation EU
CZ.02.01.01/00/22_008/0004644 Ministerstvo skolstvi, mladeze a telovychovy

Odkazy

PubMed 39138296
PubMed Central PMC11322162
DOI 10.1038/s41598-024-69408-1
PII: 10.1038/s41598-024-69408-1
Knihovny.cz E-zdroje

Multiple myeloma (MM) is the second most prevalent hematological malignancy, characterized by infiltration of the bone marrow by malignant plasma cells. Extramedullary disease (EMD) represents a more aggressive condition involving the migration of a subclone of plasma cells to paraskeletal or extraskeletal sites. Liquid biopsies could improve and speed diagnosis, as they can better capture the disease heterogeneity while lowering patients' discomfort due to minimal invasiveness. Recent studies have confirmed alterations in the proteome across various malignancies, suggesting specific changes in protein classes. In this study, we show that MALDI-TOF mass spectrometry fingerprinting of peripheral blood can differentiate between MM and primary EMD patients. We constructed a predictive model using a supervised learning method, partial least squares-discriminant analysis (PLS-DA) and evaluated its generalization performance on a test dataset. The outcome of this analysis is a method that predicts specifically primary EMD with high sensitivity (86.4%), accuracy (78.4%), and specificity (72.4%). Given the simplicity of this approach and its minimally invasive character, this method provides rapid identification of primary EMD and could prove helpful in clinical practice.

Zobrazit více v PubMed

Rajkumar, S. V. Multiple myeloma: 2022 update on diagnosis, risk-stratification and management. Am. J. Hematol.97, 1086–1107 (2022). PubMed PMC

Rajkumar, S. V. et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol.15, e538-548 (2014). PubMed

Blade, J. et al. Extramedullary disease in multiple myeloma: A systematic literature review. Blood Cancer J.12, 1–10 (2022). PubMed PMC

Rosinol, L. et al. Expert review on soft-tissue plasmacytomas in multiple myeloma: Definition, disease assessment and treatment considerations. Br. J. Haematol.194, 496–507 (2021). PubMed

Sevcikova, S. et al. Extramedullary disease in multiple myeloma - controversies and future directions. Blood Rev.36, 32–39 (2019). PubMed

Cavo, M. et al. Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: A consensus statement by the International Myeloma Working Group. Lancet Oncol.18, e206–e217 (2017). PubMed

Besse, L. et al. Cytogenetics in multiple myeloma patients progressing into extramedullary disease. Eur. J. Haematol.97, 93–100 (2016). PubMed

Pour, L. et al. Soft-tissue extramedullary multiple myeloma prognosis is significantly worse in comparison to bone-related extramedullary relapse. Haematologica99, 360–364 (2014). PubMed PMC

Stork, M. et al. Unexpected heterogeneity of newly diagnosed multiple myeloma patients with plasmacytomas. Biomedicines10, 2535 (2022). PubMed PMC

Stork, M. et al. Identification of patients at high risk of secondary extramedullary multiple myeloma development. Br. J. Haematol.196, 954–962 (2022). PubMed PMC

Jelinek, T. et al. More than 2% of circulating tumor plasma cells defines plasma cell leukemia-like multiple myeloma. J. Clin. Oncol.41, 1383–1392 (2023). PubMed PMC

Manier, S. et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat. Commun.9, 1691 (2018). PubMed PMC

Vrabel, D. et al. Dynamics of tumor-specific cfDNA in response to therapy in multiple myeloma patients. Eur. J. Haematol.104, 190–197 (2020). PubMed PMC

Besse, L. et al. Circulating serum MicroRNA-130a as a novel putative marker of extramedullary myeloma. PLoS One10, e0137294 (2015). PubMed PMC

Kubiczkova, L. et al. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica99, 511–518 (2014). PubMed PMC

Sedlarikova, L. et al. Deregulated expression of long non-coding RNA UCA1 in multiple myeloma. Eur. J. Haematol.99, 223–233 (2017). PubMed

Deulofeu, M. et al. Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma. Sci. Rep.9, 7975 (2019). PubMed PMC

Wang, Q.-T. et al. Construction of A multiple myeloma diagnostic model by magnetic bead-based MALDI-TOF mass spectrometry of serum and pattern recognition software. Anatom. Record292, 604–610 (2009). PubMed

Manier, S. et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood129, 2429–2436 (2017). PubMed PMC

Barcelo, F. et al. MALDI-TOF analysis of blood serum proteome can predict the presence of monoclonal gammopathy of undetermined significance. PLoS One13, e0201793 (2018). PubMed PMC

Cho, Y.-T. et al. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry for clinical diagnosis. Clin. Chim. Acta415, 266–275 (2013). PubMed

Chung, L. et al. Novel serum protein biomarker panel revealed by mass spectrometry and its prognostic value in breast cancer. Breast Cancer Res.16, R63 (2014). PubMed PMC

Eveillard, M. et al. Using MALDI-TOF mass spectrometry in peripheral blood for the follow up of newly diagnosed multiple myeloma patients treated with daratumumab-based combination therapy. Clin. Chim. Acta516, 136–141 (2021). PubMed PMC

Jannetto, P. J. & Fitzgerald, R. L. Effective use of mass spectrometry in the clinical laboratory. Clin. Chem.62, 92–98 (2016). PubMed

Willrich, M. A. V., Murray, D. L. & Kyle, R. A. Laboratory testing for monoclonal gammopathies: Focus on monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Clin. Biochem.51, 38–47 (2018). PubMed

Wolrab, D. et al. Lipidomic profiling of human serum enables detection of pancreatic cancer. Nat. Commun.13, 124 (2022). PubMed PMC

Pecinka, L. et al. Improved screening of monoclonal gammopathy patients by MALDI-TOF mass spectrometry. J. Am. Soc. Mass Spectrom.34, 2646 (2023). PubMed PMC

Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw.28, 1–26 (2008). PubMed

Mithraprabhu, S., Chen, M., Savvidou, I., Reale, A. & Spencer, A. Liquid biopsy: An evolving paradigm for the biological characterisation of plasma cell disorders. Leukemia35, 2771–2783 (2021). PubMed

El-Khoury, H. et al. Prevalence of monoclonal gammopathies and clinical outcomes in a high-risk US population screened by mass spectrometry: A multicentre cohort study. Lancet Haematol.9, e340–e349 (2022). PubMed PMC

Fatica, E. M. et al. MALDI-TOF mass spectrometry can distinguish immunofixation bands of the same isotype as monoclonal or biclonal proteins. Clin. Biochem.97, 67–73 (2021). PubMed

Li, J. et al. MALDI-TOF-MS for rapid screening analysis of M-protein in serum. Front. Oncol.12, 1073479 (2022). PubMed PMC

Murray, D. L. et al. Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: An international myeloma working group mass spectrometry committee report. Blood Cancer J.11, 1–6 (2021). PubMed PMC

Eveillard, M. et al. Comparison of MALDI-TOF mass spectrometry analysis of peripheral blood and bone marrow based flow cytometry for tracking measurable residual disease in patients with multiple myeloma. Br. J. Haematol.189, 904–907 (2020). PubMed PMC

Liu, C. et al. MALDI-TOF MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of hepatocellular carcinoma. Am. J. Clin. Pathol.134, 235–241 (2010). PubMed

Long, S. et al. Nanoporous silica coupled MALDI-TOF MS detection of Bence-Jones proteins in human urine for diagnosis of multiple myeloma. Talanta200, 288–292 (2019). PubMed

Santockyte, R. et al. High-throughput therapeutic antibody interference-free high-resolution mass spectrometry assay for monitoring M-proteins in multiple myeloma. Anal. Chem. 93, 834–842 (2021). PubMed

Anderson, K. C. et al. Minimal residual disease in myeloma: Application for clinical care and new drug registration. Clin. Cancer Res.27, 5195–5212 (2021). PubMed PMC

Barnidge, D. R., Krick, T. P., Griffin, T. J. & Murray, D. L. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to detect monoclonal immunoglobulin light chains in serum and urine. Rapid Commun. Mass Spectrom.29, 2057–2060 (2015). PubMed

Barnidge, D. R. et al. Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J. Proteom. Res.13, 1419–1427 (2014). PubMed

Bergen, H. R. et al. Clonotypic light chain peptides identified for monitoring minimal residual disease in multiple myeloma without bone marrow aspiration. Clin. Chem. 62, 243–251 (2016). PubMed PMC

Chapman, J. R. & Thoren, K. L. Tracking of low disease burden in multiple myeloma: Using mass spectrometry assays in peripheral blood. Best Pract. Res. Clin. Haematol.33, 101142 (2020). PubMed

Dasari, S. et al. Detection of plasma cell disorders by mass spectrometry: A comprehensive review of 19,523 cases. Mayo Clin. Proc.97, 294–307 (2022). PubMed

Murray, D. et al. Detection and prevalence of monoclonal gammopathy of undetermined significance: a study utilizing mass spectrometry-based monoclonal immunoglobulin rapid accurate mass measurement. Blood Cancer J.9, 102 (2019). PubMed PMC

He, A. et al. Detection of serum tumor markers in multiple myeloma using the CLINPROT system. Int. J. Hematol.95, 668–674 (2012). PubMed

Bai, J. et al. Variability of serum novel serum peptide biomarkers correlates with the disease states of multiple myeloma. Clin. Proteom.16, 17 (2019). PubMed PMC

Vanhara, P. et al. Intact cell mass spectrometry for embryonic stem cell biotyping. In Mass spectrometry in life sciences and clinical laboratory (ed. Mitulovic, G.) (IntechOpen, 2020).

Gibb, S. & Strimmer, K. MALDIquant: A versatile R package for the analysis of mass spectrometry data. Bioinformatics28, 2270–2271 (2012). PubMed

R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria). Available at https://www.R-project.org (2021).

Bromba, M. U. A. & Ziegler, H. Application hints for Savitzky-Golay digital smoothing filters. Anal. Chem.53, 1583–1586 (1981).

Rousseeuw, P. J. & Croux, C. Alternatives to the median absolute deviation. J. Am. Stat. Assoc.88, 1273–1283 (1993).

Ryan, C. G., Clayton, E., Griffin, W. L., Sie, S. H. & Cousens, D. R. SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms34, 396–402 (1988).

Kuhn, M. & Johnson, K. Data pre-processing. In Applied Predictive Modeling (eds. Kuhn, M. & Johnson, K.) 27–59 (Springer, New York, NY, 2013).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Detection of early relapse in multiple myeloma patients

. 2025 Jan 29 ; 20 (1) : 4. [epub] 20250129

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace