Liquid biopsy of peripheral blood using mass spectrometry detects primary extramedullary disease in multiple myeloma patients

. 2024 Aug 13 ; 14 (1) : 18777. [epub] 20240813

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39138296

Grantová podpora
NU21-03-00076 Ministerstvo Zdravotnictví Ceské Republiky
MUNI/A/1587/2023 Masarykova Univerzita
LX22NPO5102 Next generation EU
CZ.02.01.01/00/22_008/0004644 Ministerstvo skolstvi, mladeze a telovychovy

Odkazy

PubMed 39138296
PubMed Central PMC11322162
DOI 10.1038/s41598-024-69408-1
PII: 10.1038/s41598-024-69408-1
Knihovny.cz E-zdroje

Multiple myeloma (MM) is the second most prevalent hematological malignancy, characterized by infiltration of the bone marrow by malignant plasma cells. Extramedullary disease (EMD) represents a more aggressive condition involving the migration of a subclone of plasma cells to paraskeletal or extraskeletal sites. Liquid biopsies could improve and speed diagnosis, as they can better capture the disease heterogeneity while lowering patients' discomfort due to minimal invasiveness. Recent studies have confirmed alterations in the proteome across various malignancies, suggesting specific changes in protein classes. In this study, we show that MALDI-TOF mass spectrometry fingerprinting of peripheral blood can differentiate between MM and primary EMD patients. We constructed a predictive model using a supervised learning method, partial least squares-discriminant analysis (PLS-DA) and evaluated its generalization performance on a test dataset. The outcome of this analysis is a method that predicts specifically primary EMD with high sensitivity (86.4%), accuracy (78.4%), and specificity (72.4%). Given the simplicity of this approach and its minimally invasive character, this method provides rapid identification of primary EMD and could prove helpful in clinical practice.

Zobrazit více v PubMed

Rajkumar, S. V. Multiple myeloma: 2022 update on diagnosis, risk-stratification and management. PubMed DOI PMC

Rajkumar, S. V. PubMed DOI

Blade, J. PubMed DOI PMC

Rosinol, L. PubMed DOI

Sevcikova, S. PubMed DOI

Cavo, M. PubMed DOI

Besse, L. PubMed DOI

Pour, L. PubMed DOI PMC

Stork, M. PubMed DOI PMC

Stork, M. PubMed DOI PMC

Jelinek, T. PubMed DOI PMC

Manier, S. PubMed DOI PMC

Vrabel, D. PubMed DOI PMC

Besse, L. PubMed DOI PMC

Kubiczkova, L. PubMed DOI PMC

Sedlarikova, L. PubMed DOI

Deulofeu, M. PubMed DOI PMC

Wang, Q.-T. PubMed DOI

Manier, S. PubMed DOI PMC

Barcelo, F. PubMed DOI PMC

Cho, Y.-T. PubMed DOI

Chung, L. PubMed DOI PMC

Eveillard, M. PubMed DOI PMC

Jannetto, P. J. & Fitzgerald, R. L. Effective use of mass spectrometry in the clinical laboratory. PubMed DOI

Willrich, M. A. V., Murray, D. L. & Kyle, R. A. Laboratory testing for monoclonal gammopathies: Focus on monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. PubMed DOI

Wolrab, D. PubMed DOI PMC

Pecinka, L. PubMed DOI PMC

Kuhn, M. Building predictive models in R using the caret package. DOI

Mithraprabhu, S., Chen, M., Savvidou, I., Reale, A. & Spencer, A. Liquid biopsy: An evolving paradigm for the biological characterisation of plasma cell disorders. PubMed DOI

El-Khoury, H. PubMed DOI PMC

Fatica, E. M. PubMed DOI

Li, J. PubMed DOI PMC

Murray, D. L. PubMed DOI PMC

Eveillard, M. PubMed DOI PMC

Liu, C. PubMed DOI

Long, S. PubMed DOI

Santockyte, R. PubMed DOI

Anderson, K. C. PubMed DOI PMC

Barnidge, D. R., Krick, T. P., Griffin, T. J. & Murray, D. L. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to detect monoclonal immunoglobulin light chains in serum and urine. PubMed DOI

Barnidge, D. R. PubMed DOI

Bergen, H. R. PubMed DOI PMC

Chapman, J. R. & Thoren, K. L. Tracking of low disease burden in multiple myeloma: Using mass spectrometry assays in peripheral blood. PubMed DOI

Dasari, S. PubMed DOI

Murray, D. PubMed DOI PMC

He, A. PubMed DOI

Bai, J. PubMed DOI PMC

Vanhara, P.

Gibb, S. & Strimmer, K. MALDIquant: A versatile R package for the analysis of mass spectrometry data. PubMed DOI

R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria). Available at https://www.R-project.org (2021).

Bromba, M. U. A. & Ziegler, H. Application hints for Savitzky-Golay digital smoothing filters. DOI

Rousseeuw, P. J. & Croux, C. Alternatives to the median absolute deviation. DOI

Ryan, C. G., Clayton, E., Griffin, W. L., Sie, S. H. & Cousens, D. R. SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. DOI

Kuhn, M. & Johnson, K. Data pre-processing. In

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Detection of early relapse in multiple myeloma patients

. 2025 Jan 29 ; 20 (1) : 4. [epub] 20250129

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...