Dynamics of tumor-specific cfDNA in response to therapy in multiple myeloma patients
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV 17-29343A
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
31763708
PubMed Central
PMC7065130
DOI
10.1111/ejh.13358
Knihovny.cz E-zdroje
- Klíčová slova
- cell-free DNA, liquid biopsy, multiple myeloma, qPCR,
- MeSH
- cirkulující nádorová DNA * MeSH
- hodnocení výsledků zdravotní péče MeSH
- kombinovaná terapie MeSH
- lidé MeSH
- management nemoci MeSH
- mnohočetný myelom diagnóza genetika terapie MeSH
- nádorové biomarkery * MeSH
- polymerázová řetězová reakce MeSH
- průtoková cytometrie MeSH
- reziduální nádor diagnóza genetika MeSH
- těžké řetězce imunoglobulinů genetika MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cirkulující nádorová DNA * MeSH
- nádorové biomarkery * MeSH
- těžké řetězce imunoglobulinů MeSH
OBJECTIVES: Progress in multiple myeloma treatment allows patients to achieve deeper responses, for which the assessment of minimal residual disease (MRD) is critical. Typically, bone marrow samples are used for this purpose; however, this approach is site-limited. Liquid biopsy represents a minimally invasive and more comprehensive technique that is not site-limited, but equally challenging. METHODS: While majority of current data comes from short-term studies, we present a long-term study on blood-based MRD monitoring using tumor-specific cell-free DNA detection by ASO-qPCR. One hundred and twelve patients were enrolled into the study, but long-term sampling and analysis were feasible only in 45 patients. RESULTS: We found a significant correlation of quantity of tumor-specific cell-free DNA levels with clinically meaningful events [induction therapy (P = .004); ASCT (P = .012)]. Moreover, length of cfDNA fragments is associated with better treatment response of patients. CONCLUSIONS: These results support the concept of tumor-specific cell-free DNA as a prognostic marker.
Department of Clinical Hematology University Hospital Brno Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic
Institute of Biostatistics and Analyses Faculty of Medicine Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: A Cancer J Clin. 2018;68(1):7‐30. PubMed
Becker N. Epidemiology of multiple myeloma. Recent Results Cancer Res. 2011;183:25‐35. PubMed
Huang S‐Y, Yao M, Tang J‐L, et al. Epidemiology of multiple myeloma in Taiwan: increasing incidence for the past 25 years and higher prevalence of extramedullary myeloma in patients younger than 55 years. Cancer. 2007;110(4):896‐905. PubMed
Palumbo A, Chanan‐Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(8):754‐766. PubMed
Martinez‐Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073‐3079. PubMed PMC
Puig N, Sarasquete ME, Balanzategui A, et al. Critical evaluation of ASO RQ‐PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014;28(2):391‐397. PubMed
Moreau P, Zamagni E. MRD in multiple myeloma: more questions than answers? Blood cancer journal. 2017;7(12):639. PubMed PMC
Wan JCM, Massie C, Garcia‐Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223‐238. PubMed
Kubaczkova V, Vrabel D, Sedlarikova L, Besse L, Sevcikova S. Cell‐free DNA ‐ minimally invasive marker of hematological malignancies. Eur J Haematol. 2017;99(4):291‐299. PubMed
Manier S, Park J, Capelletti M, et al. Whole‐exome sequencing of cell‐free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9(1):1691. PubMed PMC
Schwarz AK, Stanulla M, Cario G, et al. Quantification of free total plasma DNA and minimal residual disease detection in the plasma of children with acute lymphoblastic leukemia. Ann Hematol. 2009;88(9):897‐905. PubMed
Armand P, Oki Y, Neuberg DS, et al. Detection of circulating tumour DNA in patients with aggressive B‐cell non‐Hodgkin lymphoma. Br J Haematol. 2013;163(1):123‐126. PubMed
Yeh P, Dickinson M, Ftouni S, et al. Molecular disease monitoring using circulating tumor DNA in myelodysplastic syndromes. Blood. 2017;129(12):1685‐1690. PubMed
Buresova I, Cumova J, Kovarova L, et al. Bone marrow plasma cell separation – validation of separation algorithm. Clin Chem Lab Med. 2012;50(6):1139‐1140. PubMed
Kubiczkova L, Kryukov F, Slaby O, et al. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica. 2014;99(3):511‐518. PubMed PMC
Voena C, Ladetto M, Astolfi M, et al. A novel nested‐PCR strategy for the detection of rearranged immunoglobulin heavy‐chain genes in B cell tumors. Leukemia. 1997;11(10):1793‐1798. PubMed
van Dongen JJM, Langerak AW, Brüggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T‐cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED‐2 Concerted Action BMH4‐CT98‐3936. Leukemia. 2003;17(12):2257‐2317. PubMed
Compagno M, Mantoan B, Astolfi M, Boccadoro M, Ladetto M. Real‐time polymerase chain reaction of immunoglobulin rearrangements for quantitative evaluation of minimal residual disease in myeloma. Methods Mol Med. 2005;113:145‐163. PubMed
Davies FE, Rawstron AC, Owen RG, Morgan GJ. Minimal residual disease monitoring in multiple myeloma. Best Pract Res Clinical Haematol. 2002;15(1):197‐222. PubMed
Brochet X, Lefranc MP, Giudicelli V. IMGT/V‐QUEST: the highly customized and integrated system for IG and TR standardized V‐J and V‐D‐J sequence analysis. Nucleic Acids Res. 2008;36(Web Server):W503–W508. PubMed PMC
Ladetto M, Donovan JW, Harig S, et al. Real‐Time polymerase chain reaction of immunoglobulin rearrangements for quantitative evaluation of minimal residual disease in multiple myeloma. Biol Blood Marrow Transplant. 2000;6(3):241‐253. PubMed
Ladetto M, Omedè P, Sametti S, et al. Real‐time polymerase chain reaction in multiple myeloma: quantitative analysis of tumor contamination of stem cell harvests. Exp Hematol. 2002;30(6):529‐536. PubMed
Gerard CJ, Olsson K, Ramanathan R, Reading C, Hanania EG. Improved quantitation of minimal residual disease in multiple myeloma using real‐time polymerase chain reaction and plasmid‐DNA complementarity determining region III standards. Can Res. 1998;58(17):3957‐3964. PubMed
van der Velden VHJ, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real‐time quantitative PCR data. Leukemia. 2007;21(4):604‐611. PubMed
Říhová L, Všianská P, Bezděková R, et al. Minimal residual disease assessment in multiple myeloma by multiparametric flow cytometry. Klin Onkol. 2017;30(Supplementum2):21‐28. PubMed
Hocking J, Mithraprabhu S, Kalff A, Spencer A. Liquid biopsies for liquid tumors: emerging potential of circulating free nucleic acid evaluation for the management of hematologic malignancies. Cancer Biol Med. 2016;13(2):215‐225. PubMed PMC
Biancon G, Gimondi S, Vendramin A, Carniti C, Corradini P. Noninvasive molecular monitoring in multiple myeloma patients using cell‐free tumor DNA: a pilot study. J Mol Diagn. 2018;20(6):859‐870. PubMed
Kis O, Kaedbey R, Chow S, et al. Circulating tumour DNA sequence analysis as an alternative to multiple myeloma bone marrow aspirates. Nat Commun. 2017;8:15086. PubMed PMC
Mithraprabhu S, Khong T, Ramachandran M, et al. Circulating tumour DNA analysis demonstrates spatial mutational heterogeneity that coincides with disease relapse in myeloma. Leukemia. 2017;31(8):1695‐1705. PubMed
Sata H, Shibayama H, Maeda I, et al. Quantitative polymerase chain reaction analysis with allele‐specific oligonucleotide primers for individual IgH VDJ regions to evaluate tumor burden in myeloma patients. Exp Hematol. 2015;43(5):374‐381.e372. PubMed
Oberle A, Brandt A, Voigtlaender M, et al. Monitoring multiple myeloma by next‐generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell‐free myeloma DNA. Haematologica. 2017;102(6):1105‐1111. PubMed PMC
Mahajan S, Tandon N, Kumar S. The evolution of stem‐cell transplantation in multiple myeloma. Ther Adv Hematol. 2018;9(5):123‐133. PubMed PMC
Mellors PW, Binder M, Buadi FK, et al. Time to plateau as a predictor of survival in newly diagnosed multiple myeloma. Am J Hematol. 2018;93(7):889‐894. PubMed
Almodovar K, Iams WT, Meador CB, et al. Longitudinal cell‐free dna analysis in patients with small cell lung cancer reveals dynamic insights into treatment efficacy and disease relapse. J Thorac Oncol. 2018;13(1):112‐123. PubMed PMC
Ferrero S, Ladetto M, Drandi D, et al. Long‐term results of the GIMEMA VEL‐03‐096 trial in MM patients receiving VTD consolidation after ASCT: MRD kinetics' impact on survival. Leukemia. 2015;29(3):689‐695. PubMed
Korthals M, Sehnke N, Kronenwett R, et al. Molecular monitoring of minimal residual disease in the peripheral blood of patients with multiple myeloma. Biol Blood Marrow Transplant. 2013;19(7):1109‐1115. PubMed
Takamatsu H. Comparison of minimal residual disease detection by multiparameter flow cytometry, ASO‐qPCR, droplet digital PCR, and deep sequencing in patients with multiple myeloma who underwent autologous stem cell transplantation. J Clin Med. 2017;6(10):91. PubMed PMC
Sarasquete ME, Garcia‐Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic‐specific oligonucleotide real‐time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90(10):1365‐1372. PubMed
Fronkova E, Muzikova K, Mejstrikova E, et al. B‐cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant. 2008;42(3):187‐196. PubMed
Kotrova M, van der Velden VHJ, van Dongen JJM, et al. NGS‐based minimal residual disease (MRD) after stem cell transplantation (SCT) is more specific for relapse prediction than qPCR and suggests the possibility of false‐positive qPCR results. Blood. 2016;128(22):3494.
Lu JL, Liang ZY. Circulating free DNA in the era of precision oncology: pre‐ and post‐analytical concerns. Chronic Dis Transl Med. 2016;2(4):223‐230. PubMed PMC
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell‐free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019;17:100087‐100087. PubMed PMC
Gerber B, Manzoni M, Spina V, et al. Circulating tumor DNA as a liquid biopsy in plasma cell dyscrasias. Haematologica. 2018;103:e245‐e248. PubMed PMC
Khier S, Lohan L. Kinetics of circulating cell‐free DNA for biomedical applications: critical appraisal of the literature. Future science OA. 2018;4(4):Fso295. PubMed PMC
Mills JR, Barnidge DR, Dispenzieri A, Murray DL. High sensitivity blood‐based M‐protein detection in sCR patients with multiple myeloma. Blood Cancer J. 2017;7(8):e590. PubMed PMC
Mazzotti C, Buisson L, Maheo S, et al. Myeloma MRD by deep sequencing from circulating tumor DNA does not correlate with results obtained in the bone marrow. Blood Adv. 2018;2(21):2811‐2813. PubMed PMC
Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Can Res. 2001;61(4):1659‐1665. PubMed
Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Anderson KC, Richardson PG. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017;36(4):561‐584. PubMed
Moriwaki K, Chan FK. Regulation of RIPK3‐ and RHIM‐dependent Necroptosis by the Proteasome. J Biol Chem. 2016;291(11):5948‐5959. PubMed PMC
Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17(2):97‐111. PubMed
Galluzzi L, Kroemer G. Secondary necrosis: accidental no more. Trends Cancer. 2017;3(1):1‐2. PubMed