Dynamics of tumor-specific cfDNA in response to therapy in multiple myeloma patients

. 2020 Mar ; 104 (3) : 190-197. [epub] 20191220

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31763708

Grantová podpora
AZV 17-29343A Ministerstvo Zdravotnictví Ceské Republiky

OBJECTIVES: Progress in multiple myeloma treatment allows patients to achieve deeper responses, for which the assessment of minimal residual disease (MRD) is critical. Typically, bone marrow samples are used for this purpose; however, this approach is site-limited. Liquid biopsy represents a minimally invasive and more comprehensive technique that is not site-limited, but equally challenging. METHODS: While majority of current data comes from short-term studies, we present a long-term study on blood-based MRD monitoring using tumor-specific cell-free DNA detection by ASO-qPCR. One hundred and twelve patients were enrolled into the study, but long-term sampling and analysis were feasible only in 45 patients. RESULTS: We found a significant correlation of quantity of tumor-specific cell-free DNA levels with clinically meaningful events [induction therapy (P = .004); ASCT (P = .012)]. Moreover, length of cfDNA fragments is associated with better treatment response of patients. CONCLUSIONS: These results support the concept of tumor-specific cell-free DNA as a prognostic marker.

Zobrazit více v PubMed

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: A Cancer J Clin. 2018;68(1):7‐30. PubMed

Becker N. Epidemiology of multiple myeloma. Recent Results Cancer Res. 2011;183:25‐35. PubMed

Huang S‐Y, Yao M, Tang J‐L, et al. Epidemiology of multiple myeloma in Taiwan: increasing incidence for the past 25 years and higher prevalence of extramedullary myeloma in patients younger than 55 years. Cancer. 2007;110(4):896‐905. PubMed

Palumbo A, Chanan‐Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(8):754‐766. PubMed

Martinez‐Lopez J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073‐3079. PubMed PMC

Puig N, Sarasquete ME, Balanzategui A, et al. Critical evaluation of ASO RQ‐PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014;28(2):391‐397. PubMed

Moreau P, Zamagni E. MRD in multiple myeloma: more questions than answers? Blood cancer journal. 2017;7(12):639. PubMed PMC

Wan JCM, Massie C, Garcia‐Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223‐238. PubMed

Kubaczkova V, Vrabel D, Sedlarikova L, Besse L, Sevcikova S. Cell‐free DNA ‐ minimally invasive marker of hematological malignancies. Eur J Haematol. 2017;99(4):291‐299. PubMed

Manier S, Park J, Capelletti M, et al. Whole‐exome sequencing of cell‐free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9(1):1691. PubMed PMC

Schwarz AK, Stanulla M, Cario G, et al. Quantification of free total plasma DNA and minimal residual disease detection in the plasma of children with acute lymphoblastic leukemia. Ann Hematol. 2009;88(9):897‐905. PubMed

Armand P, Oki Y, Neuberg DS, et al. Detection of circulating tumour DNA in patients with aggressive B‐cell non‐Hodgkin lymphoma. Br J Haematol. 2013;163(1):123‐126. PubMed

Yeh P, Dickinson M, Ftouni S, et al. Molecular disease monitoring using circulating tumor DNA in myelodysplastic syndromes. Blood. 2017;129(12):1685‐1690. PubMed

Buresova I, Cumova J, Kovarova L, et al. Bone marrow plasma cell separation – validation of separation algorithm. Clin Chem Lab Med. 2012;50(6):1139‐1140. PubMed

Kubiczkova L, Kryukov F, Slaby O, et al. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica. 2014;99(3):511‐518. PubMed PMC

Voena C, Ladetto M, Astolfi M, et al. A novel nested‐PCR strategy for the detection of rearranged immunoglobulin heavy‐chain genes in B cell tumors. Leukemia. 1997;11(10):1793‐1798. PubMed

van Dongen JJM, Langerak AW, Brüggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T‐cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED‐2 Concerted Action BMH4‐CT98‐3936. Leukemia. 2003;17(12):2257‐2317. PubMed

Compagno M, Mantoan B, Astolfi M, Boccadoro M, Ladetto M. Real‐time polymerase chain reaction of immunoglobulin rearrangements for quantitative evaluation of minimal residual disease in myeloma. Methods Mol Med. 2005;113:145‐163. PubMed

Davies FE, Rawstron AC, Owen RG, Morgan GJ. Minimal residual disease monitoring in multiple myeloma. Best Pract Res Clinical Haematol. 2002;15(1):197‐222. PubMed

Brochet X, Lefranc MP, Giudicelli V. IMGT/V‐QUEST: the highly customized and integrated system for IG and TR standardized V‐J and V‐D‐J sequence analysis. Nucleic Acids Res. 2008;36(Web Server):W503–W508. PubMed PMC

Ladetto M, Donovan JW, Harig S, et al. Real‐Time polymerase chain reaction of immunoglobulin rearrangements for quantitative evaluation of minimal residual disease in multiple myeloma. Biol Blood Marrow Transplant. 2000;6(3):241‐253. PubMed

Ladetto M, Omedè P, Sametti S, et al. Real‐time polymerase chain reaction in multiple myeloma: quantitative analysis of tumor contamination of stem cell harvests. Exp Hematol. 2002;30(6):529‐536. PubMed

Gerard CJ, Olsson K, Ramanathan R, Reading C, Hanania EG. Improved quantitation of minimal residual disease in multiple myeloma using real‐time polymerase chain reaction and plasmid‐DNA complementarity determining region III standards. Can Res. 1998;58(17):3957‐3964. PubMed

van der Velden VHJ, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real‐time quantitative PCR data. Leukemia. 2007;21(4):604‐611. PubMed

Říhová L, Všianská P, Bezděková R, et al. Minimal residual disease assessment in multiple myeloma by multiparametric flow cytometry. Klin Onkol. 2017;30(Supplementum2):21‐28. PubMed

Hocking J, Mithraprabhu S, Kalff A, Spencer A. Liquid biopsies for liquid tumors: emerging potential of circulating free nucleic acid evaluation for the management of hematologic malignancies. Cancer Biol Med. 2016;13(2):215‐225. PubMed PMC

Biancon G, Gimondi S, Vendramin A, Carniti C, Corradini P. Noninvasive molecular monitoring in multiple myeloma patients using cell‐free tumor DNA: a pilot study. J Mol Diagn. 2018;20(6):859‐870. PubMed

Kis O, Kaedbey R, Chow S, et al. Circulating tumour DNA sequence analysis as an alternative to multiple myeloma bone marrow aspirates. Nat Commun. 2017;8:15086. PubMed PMC

Mithraprabhu S, Khong T, Ramachandran M, et al. Circulating tumour DNA analysis demonstrates spatial mutational heterogeneity that coincides with disease relapse in myeloma. Leukemia. 2017;31(8):1695‐1705. PubMed

Sata H, Shibayama H, Maeda I, et al. Quantitative polymerase chain reaction analysis with allele‐specific oligonucleotide primers for individual IgH VDJ regions to evaluate tumor burden in myeloma patients. Exp Hematol. 2015;43(5):374‐381.e372. PubMed

Oberle A, Brandt A, Voigtlaender M, et al. Monitoring multiple myeloma by next‐generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell‐free myeloma DNA. Haematologica. 2017;102(6):1105‐1111. PubMed PMC

Mahajan S, Tandon N, Kumar S. The evolution of stem‐cell transplantation in multiple myeloma. Ther Adv Hematol. 2018;9(5):123‐133. PubMed PMC

Mellors PW, Binder M, Buadi FK, et al. Time to plateau as a predictor of survival in newly diagnosed multiple myeloma. Am J Hematol. 2018;93(7):889‐894. PubMed

Almodovar K, Iams WT, Meador CB, et al. Longitudinal cell‐free dna analysis in patients with small cell lung cancer reveals dynamic insights into treatment efficacy and disease relapse. J Thorac Oncol. 2018;13(1):112‐123. PubMed PMC

Ferrero S, Ladetto M, Drandi D, et al. Long‐term results of the GIMEMA VEL‐03‐096 trial in MM patients receiving VTD consolidation after ASCT: MRD kinetics' impact on survival. Leukemia. 2015;29(3):689‐695. PubMed

Korthals M, Sehnke N, Kronenwett R, et al. Molecular monitoring of minimal residual disease in the peripheral blood of patients with multiple myeloma. Biol Blood Marrow Transplant. 2013;19(7):1109‐1115. PubMed

Takamatsu H. Comparison of minimal residual disease detection by multiparameter flow cytometry, ASO‐qPCR, droplet digital PCR, and deep sequencing in patients with multiple myeloma who underwent autologous stem cell transplantation. J Clin Med. 2017;6(10):91. PubMed PMC

Sarasquete ME, Garcia‐Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic‐specific oligonucleotide real‐time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90(10):1365‐1372. PubMed

Fronkova E, Muzikova K, Mejstrikova E, et al. B‐cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant. 2008;42(3):187‐196. PubMed

Kotrova M, van der Velden VHJ, van Dongen JJM, et al. NGS‐based minimal residual disease (MRD) after stem cell transplantation (SCT) is more specific for relapse prediction than qPCR and suggests the possibility of false‐positive qPCR results. Blood. 2016;128(22):3494.

Lu JL, Liang ZY. Circulating free DNA in the era of precision oncology: pre‐ and post‐analytical concerns. Chronic Dis Transl Med. 2016;2(4):223‐230. PubMed PMC

Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell‐free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019;17:100087‐100087. PubMed PMC

Gerber B, Manzoni M, Spina V, et al. Circulating tumor DNA as a liquid biopsy in plasma cell dyscrasias. Haematologica. 2018;103:e245‐e248. PubMed PMC

Khier S, Lohan L. Kinetics of circulating cell‐free DNA for biomedical applications: critical appraisal of the literature. Future science OA. 2018;4(4):Fso295. PubMed PMC

Mills JR, Barnidge DR, Dispenzieri A, Murray DL. High sensitivity blood‐based M‐protein detection in sCR patients with multiple myeloma. Blood Cancer J. 2017;7(8):e590. PubMed PMC

Mazzotti C, Buisson L, Maheo S, et al. Myeloma MRD by deep sequencing from circulating tumor DNA does not correlate with results obtained in the bone marrow. Blood Adv. 2018;2(21):2811‐2813. PubMed PMC

Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Can Res. 2001;61(4):1659‐1665. PubMed

Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Anderson KC, Richardson PG. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017;36(4):561‐584. PubMed

Moriwaki K, Chan FK. Regulation of RIPK3‐ and RHIM‐dependent Necroptosis by the Proteasome. J Biol Chem. 2016;291(11):5948‐5959. PubMed PMC

Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17(2):97‐111. PubMed

Galluzzi L, Kroemer G. Secondary necrosis: accidental no more. Trends Cancer. 2017;3(1):1‐2. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...