Improved Screening of Monoclonal Gammopathy Patients by MALDI-TOF Mass Spectrometry
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37994781
PubMed Central
PMC10704583
DOI
10.1021/jasms.3c00166
Knihovny.cz E-zdroje
- Klíčová slova
- MALDI-TOF mass spectrometry, fingerprinting, machine learning, molecular profiling, monoclonal gammopathy, multiple myeloma, partial least-squares-discriminant analysis, plasma cell leukemia, principal component analysis,
- MeSH
- krevní plazma MeSH
- lidé MeSH
- mnohočetný myelom * diagnóza MeSH
- paraproteinemie * diagnóza MeSH
- plazmocelulární leukemie * MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Monoclonal gammopathies are a group of blood diseases characterized by presence of abnormal immunoglobulins in peripheral blood and/or urine of patients. Multiple myeloma and plasma cell leukemia are monoclonal gammopathies with unclear etiology, caused by malignant transformation of bone marrow plasma cells. Mass spectrometry with matrix-assisted laser desorption/ionization and time-of-flight detection is commonly used for investigation of the peptidome and small proteome of blood plasma with high accuracy, robustness, and cost-effectivity. In addition, mass spectrometry coupled with advanced statistics can be used for molecular profiling, classification, and diagnosis of liquid biopsies and tissue specimens in various malignancies. Despite the fact there have been fully optimized protocols for mass spectrometry of normal blood plasma available for decades, in monoclonal gammopathy patients, the massive alterations of biophysical and biochemical parameters of peripheral blood plasma often limit the mass spectrometry measurements. In this paper, we present a new two-step extraction protocol and demonstrated the enhanced resolution and intensity (>50×) of mass spectra obtained from extracts of peripheral blood plasma from monoclonal gammopathy patients. When coupled with advanced statistics and machine learning, the mass spectra profiles enabled the direct identification, classification, and discrimination of multiple myeloma and plasma cell leukemia patients with high accuracy and precision. A model based on PLS-DA achieved the best performance with 71.5% accuracy (95% confidence interval, CI = 57.1-83.3%) when the 10× repeated 5-fold CV was performed. In summary, the two-step extraction protocol improved the analysis of monoclonal gammopathy peripheral blood plasma samples by mass spectrometry and provided a tool for addressing the complex molecular etiology of monoclonal gammopathies.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
Department of Clinical Hematology University Hospital Brno Jihlavská 20 625 00 Brno Czech Republic
Zobrazit více v PubMed
Ashfaq M. Y.; Da’na D. A.; Al-Ghouti M. A. Application of MALDI-TOF MS for Identification of Environmental Bacteria: A Review. Journal of Environmental Management 2022, 305, 11435910.1016/j.jenvman.2021.114359. PubMed DOI
Dueñas M. E.; Larson E. A.; Lee Y. J. Toward Mass Spectrometry Imaging in the Metabolomics Scale: Increasing Metabolic Coverage Through Multiple On-Tissue Chemical Modifications. Front. Plant Sci. 2019, 10, 860.10.3389/fpls.2019.00860. PubMed DOI PMC
Lin C.-H.; Su H.; Hung C.-C.; Lane H.-Y.; Shiea J. Characterization of Potential Protein Biomarkers for Major Depressive Disorder Using Matrix-Assisted Laser Desorption Ionization/Time-of-Flight Mass Spectrometry. Molecules 2021, 26 (15), 4457.10.3390/molecules26154457. PubMed DOI PMC
Mehta J.; Singhal S. Hyperviscosity Syndrome in Plasma Cell Dyscrasias. Semin Thromb Hemost 2003, 29 (5), 467–472. 10.1055/s-2003-44554. PubMed DOI
Hortin G. L. The MALDI-TOF Mass Spectrometric View of the Plasma Proteome and Peptidome. Clin Chem. 2006, 52 (7), 1223–1237. 10.1373/clinchem.2006.069252. PubMed DOI
Wawrzyniak R.; Kosnowska A.; Macioszek S.; Bartoszewski R.; Jan Markuszewski M. New Plasma Preparation Approach to Enrich Metabolome Coverage in Untargeted Metabolomics: Plasma Protein Bound Hydrophobic Metabolite Release with Proteinase K. Sci. Rep 2018, 8 (1), 9541.10.1038/s41598-018-27983-0. PubMed DOI PMC
Luque-Garcia J. L.; Neubert T. A. Sample Preparation for Serum/Plasma Profiling and Biomarker Identification by Mass Spectrometry. J. Chromatogr A 2007, 1153 (1–2), 259–276. 10.1016/j.chroma.2006.11.054. PubMed DOI PMC
Eggers L. F.; Schwudke D. Liquid Extraction: Folch. Encyclopedia of Lipidomics 2016, 1–6. 10.1007/978-94-007-7864-1_89-1. DOI
Merrell K.; Southwick K.; Graves S. W.; Esplin M. S.; Lewis N. E.; Thulin C. D. Analysis of Low-Abundance, Low-Molecular-Weight Serum Proteins Using Mass Spectrometry. J. Biomol Tech 2004, 15 (4), 238–248. PubMed PMC
Chertov O.; Biragyn A.; Kwak L. W.; Simpson J. T.; Boronina T.; Hoang V. M.; Prieto D. A.; Conrads T. P.; Veenstra T. D.; Fisher R. J. Organic Solvent Extraction of Proteins and Peptides from Serum as an Effective Sample Preparation for Detection and Identification of Biomarkers by Mass Spectrometry. Proteomics 2004, 4 (4), 1195–1203. 10.1002/pmic.200300677. PubMed DOI
Malúšková D.; Svobodová I.; Kučerová M.; Brožová L.; Mužík J.; Jarkovský J.; Hájek R.; Maisnar V.; Dušek L. Epidemiology of Multiple Myeloma in the Czech Republic. Klin Onkol 2017, 30 (Supplementum2), 35–42. PubMed
Fernández de Larrea C.; Kyle R.; Rosiñol L.; Paiva B.; Engelhardt M.; Usmani S.; Caers J.; Gonsalves W.; Schjesvold F.; Merlini G.; Lentzch S.; Ocio E.; Garderet L.; Moreau P.; Sonneveld P.; Badros A.; Gahrton G.; Goldschmidt H.; Tuchman S.; Einsele H.; Durie B.; Wirk B.; Musto P.; Hayden P.; Kaiser M.; Miguel J. S.; Bladé J.; Rajkumar S. V.; Mateos M. V. Primary Plasma Cell Leukemia: Consensus Definition by the International Myeloma Working Group According to Peripheral Blood Plasma Cell Percentage. Blood Cancer J. 2021, 11 (12), 192.10.1038/s41408-021-00587-0. PubMed DOI PMC
Jurczyszyn A.; Castillo J. J.; Avivi I.; Czepiel J.; Davila J.; Vij R.; Fiala M. A.; Gozzetti A.; Grząśko N.; Milunovic V.; Hus I.; Mądry K.; Waszczuk-Gajda A.; Usnarska-Zubkiewicz L.; Dębski J.; Atilla E.; Beksac M.; Mele G.; Sawicki W.; Jayabalan D.; Charliński G.; Gyula Szabo A.; Hajek R.; Delforge M.; Kopacz A.; Fantl D.; Waage A.; Crusoe E.; Hungria V.; Richardson P.; Laubach J.; Guerrero-Garcia T.; Liu J.; Vesole D. H. Secondary Plasma Cell Leukemia: A Multicenter Retrospective Study of 101 Patients. Leuk. Lymphoma 2019, 60 (1), 118–123. 10.1080/10428194.2018.1473574. PubMed DOI
Tiedemann R. E.; Gonzalez-Paz N.; Kyle R. A.; Santana-Davila R.; Price-Troska T.; Van Wier S. A.; Chng W. J.; Ketterling R. P.; Gertz M. A.; Henderson K.; Greipp P. R.; Dispenzieri A.; Lacy M. Q.; Rajkumar S. V.; Bergsagel P. L.; Stewart A. K.; Fonseca R. Genetic Aberrations and Survival in Plasma Cell Leukemia. Leukemia 2008, 22 (5), 1044–1052. 10.1038/leu.2008.4. PubMed DOI PMC
Jung S.-H.; Lee J.-J. Update on Primary Plasma Cell Leukemia. Blood Res. 2022, 57 (S1), S62–S66. 10.5045/br.2022.2022033. PubMed DOI PMC
Barceló F.; Gomila R.; de Paul I.; Gili X.; Segura J.; Pérez-Montaña A.; Jimenez-Marco T.; Sampol A.; Portugal J. MALDI-TOF Analysis of Blood Serum Proteome Can. Predict the Presence of Monoclonal Gammopathy of Undetermined Significance. PLoS One 2018, 13 (8), e020179310.1371/journal.pone.0201793. PubMed DOI PMC
Murray D. L.; Puig N.; Kristinsson S.; Usmani S. Z.; Dispenzieri A.; Bianchi G.; Kumar S.; Chng W. J.; Hajek R.; Paiva B.; Waage A.; Rajkumar S. V.; Durie B. Mass Spectrometry for the Evaluation of Monoclonal Proteins in Multiple Myeloma and Related Disorders: An International Myeloma Working Group Mass Spectrometry Committee Report. Blood Cancer J. 2021, 11 (2), 1–6. 10.1038/s41408-021-00408-4. PubMed DOI PMC
Li J.; Xu A.; Xie W.; Li B.; Yan C.; Xia Y.; Liang C.; Ji L. MALDI-TOF-MS for Rapid Screening Analysis of M-Protein in Serum. Front. Oncol. 2022, 12, 107347910.3389/fonc.2022.1073479. PubMed DOI PMC
Fatica E. M.; Martinez M.; Ladwig P. M.; Murray J. D.; Kohlhagen M. C.; Kyle R. A.; Kourelis T.; Lust J. A.; Snyder M. R.; Dispenzieri A.; Murray D. L.; Willrich M. A. V. MALDI-TOF Mass Spectrometry Can Distinguish Immunofixation Bands of the Same Isotype as Monoclonal or Biclonal Proteins. Clin. Biochem. 2021, 97, 67–73. 10.1016/j.clinbiochem.2021.08.001. PubMed DOI
El-Khoury H.; Bertamini L.; Alberge J.-B.; Lee D. J.; Murphy C.; Fleming G.; Cea-Curry C. J.; Davis M. I.; Perry J.; Lightbody E. D.; Sakrikar D.; Troske D.; Barnidge D.; Perkins M. C.; Harding S.; Getz G.; Marinac C. R.; Ghobrial I. Persistence of Monoclonal Gammopathies in Serial Samples from a US Population-Based Screening Study. Blood 2022, 140 (Supplement 1), 10101–10103. 10.1182/blood-2022-169380. DOI
Eveillard M.; Korde N.; Ciardiello A.; Diamond B.; Lesokhin A.; Mailankody S.; Smith E.; Hassoun H.; Hultcrantz M.; Shah U.; Lu S.; Salcedo M.; Werner K.; Rispoli J.; Mastey D.; Landgren O.; Thoren K. Using MALDI-TOF Mass Spectrometry in Peripheral Blood for the Follow up of Newly Diagnosed Multiple Myeloma Patients Treated with Daratumumab-Based Combination Therapy. Clin. Chim. Acta 2021, 516, 136–141. 10.1016/j.cca.2021.01.021. PubMed DOI PMC
Deulofeu M.; Kolářová L.; Salvadó V.; María Peña-Méndez E.; Almáši M.; Štork M.; Pour L.; Boadas-Vaello P.; Ševčíková S.; Havel J.; Vaňhara P. Rapid Discrimination of Multiple Myeloma Patients by Artificial Neural Networks Coupled with Mass Spectrometry of Peripheral Blood Plasma. Sci. Rep 2019, 9 (1), 7975.10.1038/s41598-019-44215-1. PubMed DOI PMC
Gregorová J.; Vychytilová-Faltejsková P.; Kramářová T.; Knechtová Z.; Almáši M.; Štork M.; Pour L.; Kohoutek J.; Ševčíková S. Proteomic Analysis of the Bone Marrow Microenvironment in Extramedullary Multiple Myeloma Patients. Neoplasma 2022, 69 (2), 412–424. 10.4149/neo_2021_210527N715. PubMed DOI
Vaňhara P.; Moráň L.; Pečinka L.; Porokh V.; Pivetta T.; Masuri S.; Peña-Méndez E. M.; González J. E. C.; Hampl A.; Havel J.. Intact Cell Mass Spectrometry for Embryonic Stem Cell Biotyping. In Mass Spectrometry in Life Sciences and Clinical Laboratory; IntechOpen, 2020. 10.5772/intechopen.95074. DOI
Gibb S.; Strimmer K. MALDIquant: A Versatile R Package for the Analysis of Mass Spectrometry Data. Bioinformatics 2012, 28 (17), 2270–2271. 10.1093/bioinformatics/bts447. PubMed DOI
Rousseeuw P. J.; Croux C. Alternatives to the Median Absolute Deviation. J. Am. Stat Assoc 1993, 88 (424), 1273–1283. 10.1080/01621459.1993.10476408. DOI
Ryan C. G.; Clayton E.; Griffin W. L.; Sie S. H.; Cousens D. R. SNIP, a Statistics-Sensitive Background Treatment for the Quantitative Analysis of PIXE Spectra in Geoscience Applications. Nucl. Instrum. Methods. Phys. Res. B 1988, 34, 396–402. 10.1016/0168-583X(88)90063-8. DOI
Bromba M. U. A.; Ziegler H. Application Hints for Savitzky-Golay Digital Smoothing Filters. Anal. Chem. 1981, 53 (11), 1583–1586. 10.1021/ac00234a011. DOI