Improved Screening of Monoclonal Gammopathy Patients by MALDI-TOF Mass Spectrometry

. 2023 Dec 06 ; 34 (12) : 2646-2653. [epub] 20231123

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37994781

Monoclonal gammopathies are a group of blood diseases characterized by presence of abnormal immunoglobulins in peripheral blood and/or urine of patients. Multiple myeloma and plasma cell leukemia are monoclonal gammopathies with unclear etiology, caused by malignant transformation of bone marrow plasma cells. Mass spectrometry with matrix-assisted laser desorption/ionization and time-of-flight detection is commonly used for investigation of the peptidome and small proteome of blood plasma with high accuracy, robustness, and cost-effectivity. In addition, mass spectrometry coupled with advanced statistics can be used for molecular profiling, classification, and diagnosis of liquid biopsies and tissue specimens in various malignancies. Despite the fact there have been fully optimized protocols for mass spectrometry of normal blood plasma available for decades, in monoclonal gammopathy patients, the massive alterations of biophysical and biochemical parameters of peripheral blood plasma often limit the mass spectrometry measurements. In this paper, we present a new two-step extraction protocol and demonstrated the enhanced resolution and intensity (>50×) of mass spectra obtained from extracts of peripheral blood plasma from monoclonal gammopathy patients. When coupled with advanced statistics and machine learning, the mass spectra profiles enabled the direct identification, classification, and discrimination of multiple myeloma and plasma cell leukemia patients with high accuracy and precision. A model based on PLS-DA achieved the best performance with 71.5% accuracy (95% confidence interval, CI = 57.1-83.3%) when the 10× repeated 5-fold CV was performed. In summary, the two-step extraction protocol improved the analysis of monoclonal gammopathy peripheral blood plasma samples by mass spectrometry and provided a tool for addressing the complex molecular etiology of monoclonal gammopathies.

Zobrazit více v PubMed

Ashfaq M. Y.; Da’na D. A.; Al-Ghouti M. A. Application of MALDI-TOF MS for Identification of Environmental Bacteria: A Review. Journal of Environmental Management 2022, 305, 11435910.1016/j.jenvman.2021.114359. PubMed DOI

Dueñas M. E.; Larson E. A.; Lee Y. J. Toward Mass Spectrometry Imaging in the Metabolomics Scale: Increasing Metabolic Coverage Through Multiple On-Tissue Chemical Modifications. Front. Plant Sci. 2019, 10, 860.10.3389/fpls.2019.00860. PubMed DOI PMC

Lin C.-H.; Su H.; Hung C.-C.; Lane H.-Y.; Shiea J. Characterization of Potential Protein Biomarkers for Major Depressive Disorder Using Matrix-Assisted Laser Desorption Ionization/Time-of-Flight Mass Spectrometry. Molecules 2021, 26 (15), 4457.10.3390/molecules26154457. PubMed DOI PMC

Mehta J.; Singhal S. Hyperviscosity Syndrome in Plasma Cell Dyscrasias. Semin Thromb Hemost 2003, 29 (5), 467–472. 10.1055/s-2003-44554. PubMed DOI

Hortin G. L. The MALDI-TOF Mass Spectrometric View of the Plasma Proteome and Peptidome. Clin Chem. 2006, 52 (7), 1223–1237. 10.1373/clinchem.2006.069252. PubMed DOI

Wawrzyniak R.; Kosnowska A.; Macioszek S.; Bartoszewski R.; Jan Markuszewski M. New Plasma Preparation Approach to Enrich Metabolome Coverage in Untargeted Metabolomics: Plasma Protein Bound Hydrophobic Metabolite Release with Proteinase K. Sci. Rep 2018, 8 (1), 9541.10.1038/s41598-018-27983-0. PubMed DOI PMC

Luque-Garcia J. L.; Neubert T. A. Sample Preparation for Serum/Plasma Profiling and Biomarker Identification by Mass Spectrometry. J. Chromatogr A 2007, 1153 (1–2), 259–276. 10.1016/j.chroma.2006.11.054. PubMed DOI PMC

Eggers L. F.; Schwudke D. Liquid Extraction: Folch. Encyclopedia of Lipidomics 2016, 1–6. 10.1007/978-94-007-7864-1_89-1. DOI

Merrell K.; Southwick K.; Graves S. W.; Esplin M. S.; Lewis N. E.; Thulin C. D. Analysis of Low-Abundance, Low-Molecular-Weight Serum Proteins Using Mass Spectrometry. J. Biomol Tech 2004, 15 (4), 238–248. PubMed PMC

Chertov O.; Biragyn A.; Kwak L. W.; Simpson J. T.; Boronina T.; Hoang V. M.; Prieto D. A.; Conrads T. P.; Veenstra T. D.; Fisher R. J. Organic Solvent Extraction of Proteins and Peptides from Serum as an Effective Sample Preparation for Detection and Identification of Biomarkers by Mass Spectrometry. Proteomics 2004, 4 (4), 1195–1203. 10.1002/pmic.200300677. PubMed DOI

Malúšková D.; Svobodová I.; Kučerová M.; Brožová L.; Mužík J.; Jarkovský J.; Hájek R.; Maisnar V.; Dušek L. Epidemiology of Multiple Myeloma in the Czech Republic. Klin Onkol 2017, 30 (Supplementum2), 35–42. PubMed

Fernández de Larrea C.; Kyle R.; Rosiñol L.; Paiva B.; Engelhardt M.; Usmani S.; Caers J.; Gonsalves W.; Schjesvold F.; Merlini G.; Lentzch S.; Ocio E.; Garderet L.; Moreau P.; Sonneveld P.; Badros A.; Gahrton G.; Goldschmidt H.; Tuchman S.; Einsele H.; Durie B.; Wirk B.; Musto P.; Hayden P.; Kaiser M.; Miguel J. S.; Bladé J.; Rajkumar S. V.; Mateos M. V. Primary Plasma Cell Leukemia: Consensus Definition by the International Myeloma Working Group According to Peripheral Blood Plasma Cell Percentage. Blood Cancer J. 2021, 11 (12), 192.10.1038/s41408-021-00587-0. PubMed DOI PMC

Jurczyszyn A.; Castillo J. J.; Avivi I.; Czepiel J.; Davila J.; Vij R.; Fiala M. A.; Gozzetti A.; Grząśko N.; Milunovic V.; Hus I.; Mądry K.; Waszczuk-Gajda A.; Usnarska-Zubkiewicz L.; Dębski J.; Atilla E.; Beksac M.; Mele G.; Sawicki W.; Jayabalan D.; Charliński G.; Gyula Szabo A.; Hajek R.; Delforge M.; Kopacz A.; Fantl D.; Waage A.; Crusoe E.; Hungria V.; Richardson P.; Laubach J.; Guerrero-Garcia T.; Liu J.; Vesole D. H. Secondary Plasma Cell Leukemia: A Multicenter Retrospective Study of 101 Patients. Leuk. Lymphoma 2019, 60 (1), 118–123. 10.1080/10428194.2018.1473574. PubMed DOI

Tiedemann R. E.; Gonzalez-Paz N.; Kyle R. A.; Santana-Davila R.; Price-Troska T.; Van Wier S. A.; Chng W. J.; Ketterling R. P.; Gertz M. A.; Henderson K.; Greipp P. R.; Dispenzieri A.; Lacy M. Q.; Rajkumar S. V.; Bergsagel P. L.; Stewart A. K.; Fonseca R. Genetic Aberrations and Survival in Plasma Cell Leukemia. Leukemia 2008, 22 (5), 1044–1052. 10.1038/leu.2008.4. PubMed DOI PMC

Jung S.-H.; Lee J.-J. Update on Primary Plasma Cell Leukemia. Blood Res. 2022, 57 (S1), S62–S66. 10.5045/br.2022.2022033. PubMed DOI PMC

Barceló F.; Gomila R.; de Paul I.; Gili X.; Segura J.; Pérez-Montaña A.; Jimenez-Marco T.; Sampol A.; Portugal J. MALDI-TOF Analysis of Blood Serum Proteome Can. Predict the Presence of Monoclonal Gammopathy of Undetermined Significance. PLoS One 2018, 13 (8), e020179310.1371/journal.pone.0201793. PubMed DOI PMC

Murray D. L.; Puig N.; Kristinsson S.; Usmani S. Z.; Dispenzieri A.; Bianchi G.; Kumar S.; Chng W. J.; Hajek R.; Paiva B.; Waage A.; Rajkumar S. V.; Durie B. Mass Spectrometry for the Evaluation of Monoclonal Proteins in Multiple Myeloma and Related Disorders: An International Myeloma Working Group Mass Spectrometry Committee Report. Blood Cancer J. 2021, 11 (2), 1–6. 10.1038/s41408-021-00408-4. PubMed DOI PMC

Li J.; Xu A.; Xie W.; Li B.; Yan C.; Xia Y.; Liang C.; Ji L. MALDI-TOF-MS for Rapid Screening Analysis of M-Protein in Serum. Front. Oncol. 2022, 12, 107347910.3389/fonc.2022.1073479. PubMed DOI PMC

Fatica E. M.; Martinez M.; Ladwig P. M.; Murray J. D.; Kohlhagen M. C.; Kyle R. A.; Kourelis T.; Lust J. A.; Snyder M. R.; Dispenzieri A.; Murray D. L.; Willrich M. A. V. MALDI-TOF Mass Spectrometry Can Distinguish Immunofixation Bands of the Same Isotype as Monoclonal or Biclonal Proteins. Clin. Biochem. 2021, 97, 67–73. 10.1016/j.clinbiochem.2021.08.001. PubMed DOI

El-Khoury H.; Bertamini L.; Alberge J.-B.; Lee D. J.; Murphy C.; Fleming G.; Cea-Curry C. J.; Davis M. I.; Perry J.; Lightbody E. D.; Sakrikar D.; Troske D.; Barnidge D.; Perkins M. C.; Harding S.; Getz G.; Marinac C. R.; Ghobrial I. Persistence of Monoclonal Gammopathies in Serial Samples from a US Population-Based Screening Study. Blood 2022, 140 (Supplement 1), 10101–10103. 10.1182/blood-2022-169380. DOI

Eveillard M.; Korde N.; Ciardiello A.; Diamond B.; Lesokhin A.; Mailankody S.; Smith E.; Hassoun H.; Hultcrantz M.; Shah U.; Lu S.; Salcedo M.; Werner K.; Rispoli J.; Mastey D.; Landgren O.; Thoren K. Using MALDI-TOF Mass Spectrometry in Peripheral Blood for the Follow up of Newly Diagnosed Multiple Myeloma Patients Treated with Daratumumab-Based Combination Therapy. Clin. Chim. Acta 2021, 516, 136–141. 10.1016/j.cca.2021.01.021. PubMed DOI PMC

Deulofeu M.; Kolářová L.; Salvadó V.; María Peña-Méndez E.; Almáši M.; Štork M.; Pour L.; Boadas-Vaello P.; Ševčíková S.; Havel J.; Vaňhara P. Rapid Discrimination of Multiple Myeloma Patients by Artificial Neural Networks Coupled with Mass Spectrometry of Peripheral Blood Plasma. Sci. Rep 2019, 9 (1), 7975.10.1038/s41598-019-44215-1. PubMed DOI PMC

Gregorová J.; Vychytilová-Faltejsková P.; Kramářová T.; Knechtová Z.; Almáši M.; Štork M.; Pour L.; Kohoutek J.; Ševčíková S. Proteomic Analysis of the Bone Marrow Microenvironment in Extramedullary Multiple Myeloma Patients. Neoplasma 2022, 69 (2), 412–424. 10.4149/neo_2021_210527N715. PubMed DOI

Vaňhara P.; Moráň L.; Pečinka L.; Porokh V.; Pivetta T.; Masuri S.; Peña-Méndez E. M.; González J. E. C.; Hampl A.; Havel J.. Intact Cell Mass Spectrometry for Embryonic Stem Cell Biotyping. In Mass Spectrometry in Life Sciences and Clinical Laboratory; IntechOpen, 2020. 10.5772/intechopen.95074. DOI

Gibb S.; Strimmer K. MALDIquant: A Versatile R Package for the Analysis of Mass Spectrometry Data. Bioinformatics 2012, 28 (17), 2270–2271. 10.1093/bioinformatics/bts447. PubMed DOI

Rousseeuw P. J.; Croux C. Alternatives to the Median Absolute Deviation. J. Am. Stat Assoc 1993, 88 (424), 1273–1283. 10.1080/01621459.1993.10476408. DOI

Ryan C. G.; Clayton E.; Griffin W. L.; Sie S. H.; Cousens D. R. SNIP, a Statistics-Sensitive Background Treatment for the Quantitative Analysis of PIXE Spectra in Geoscience Applications. Nucl. Instrum. Methods. Phys. Res. B 1988, 34, 396–402. 10.1016/0168-583X(88)90063-8. DOI

Bromba M. U. A.; Ziegler H. Application Hints for Savitzky-Golay Digital Smoothing Filters. Anal. Chem. 1981, 53 (11), 1583–1586. 10.1021/ac00234a011. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace