Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma

. 2019 May 28 ; 9 (1) : 7975. [epub] 20190528

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31138828
Odkazy

PubMed 31138828
PubMed Central PMC6538619
DOI 10.1038/s41598-019-44215-1
PII: 10.1038/s41598-019-44215-1
Knihovny.cz E-zdroje

Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed. Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF MS) is a powerful method that found its applications in clinical diagnostics. Artificial intelligence approaches, such as Artificial Neural Networks (ANNs), can handle non-linear data and provide prediction and classification of variables in multidimensional datasets. In this study, we used MALDI-TOF MS to acquire low mass profiles of peripheral blood plasma obtained from MM patients and healthy donors. Informative patterns in mass spectra served as inputs for ANN that specifically predicted MM samples with high sensitivity (100%), specificity (95%) and accuracy (98%). Thus, mass spectrometry coupled with ANN can provide a minimally invasive approach for MM diagnostics.

Zobrazit více v PubMed

Attaelmannan M, Levinson SS. Understanding and identifying monoclonal gammopathies. Clin. Chem. 2000;46:1230–1238. PubMed

Kyle RA, Rajkumar SV. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia. 2009;23:3–9. doi: 10.1038/leu.2008.291. PubMed DOI PMC

Rajkumar SV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI

Dimopoulos MA, Terpos E. Multiple myeloma. Ann. Oncol. 2010;21:vii143–150. doi: 10.1093/annonc/mdq370. PubMed DOI

Maluskova D, et al. Epidemiology of Multiple Myeloma in the Czech Republic. Klin.Onkol. 2017;30:35–42. doi: 10.14735/amko20172S35. PubMed DOI

Hajek R, Bryce R, Ro S, Klencke B, Ludwig H. Design and rationale of FOCUS (PX-171-011): a randomized, open-label, phase 3 study of carfilzomib versus best supportive care regimen in patients with relapsed and refractory multiple myeloma (R/R MM) BMC Cancer. 2012;12:415–422. doi: 10.1186/1471-2407-12-415. PubMed DOI PMC

Walker BA, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587–597. doi: 10.1182/blood-2018-10-875138. PubMed DOI PMC

Kubaczkova V, et al. Liquid Biopsies - the Clinics and the Molecules. Klin. Onkol. 2017;30:13–2. doi: 10.14735/amko20172S13. PubMed DOI

Tolson J, et al. Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab. Invest. 2004;84:845–856. doi: 10.1038/labinvest.3700097. PubMed DOI

Jin H, et al. Discrimination Analysis of Mass Spectrometry Proteomics for Lung Adenocarcinoma Detection. Lab Medicine. 2011;42:344–349. doi: 10.1309/LMXWEJV3FFDR0DHH. DOI

Steel LF, et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics. 2003;3:601–609. doi: 10.1002/pmic.200300399. PubMed DOI

Pietrowska M, et al. Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer. J. Transl. Med. 2009;7:60–73. doi: 10.1186/1479-5876-7-60. PubMed DOI PMC

Pietrowska M, et al. Mass spectrometry-based analysis of therapy-related changes in serum proteome patterns of patients with early-stage breast cancer. J. Transl. Med. 2010;8:66–77. doi: 10.1186/1479-5876-8-66. PubMed DOI PMC

Roessler M, et al. Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin. Cancer. Res. 2005;11:6550–6557. doi: 10.1158/1078-0432.CCR-05-0983. PubMed DOI

Grizzle WE, et al. The Early Detection Research Network surface-enhanced laser desorption and ionization prostate cancer detection study: a study in biomarker validation in genitourinary oncology. Urol. Oncol. 2004;22:337–343. doi: 10.1016/j.urolonc.2004.04.008. PubMed DOI

Kozak KR, et al. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: Potential use in diagnosis and prognosis. Proc. Natl. Acad. Sci. USA. 2003;100:12343–12348. doi: 10.1073/pnas.2033602100. PubMed DOI PMC

He AL, et al. Detection of serum tumor markers in multiple myeloma using the CLINPROT system. Int. J. Hematol. 2012;95:668–674. doi: 10.1007/s12185-012-1080-3. PubMed DOI

Puchades-Carrasco L, et al. Multiple myeloma patients have a specific serum metabolomic profile that changes after achieving complete remission. Clin. Cancer Res. 2013;19:4770–4779. doi: 10.1158/1078-0432.CCR-12-2917. PubMed DOI

Wang QT, et al. Construction of A Multiple Myeloma Diagnostic Model by Magnetic Bead-Based MALDI-TOF Mass Spectrometry of Serum and Pattern Recognition Software. Anat. Rec. 2009;292:604–610. doi: 10.1002/ar.20871. PubMed DOI

Zhang HT, Tian EB, Chen YL, Deng HT, Wang QT. Proteomic Analysis for Finding Serum Pathogenic Factors and Potential Biomarkers in Multiple Myeloma. Chin. Med. J. 2015;128:1108–1113. doi: 10.4103/0366-6999.155112. PubMed DOI PMC

Bhattacharyya S, Epstein J, Suva LJ. Biomarkers that discriminate multiple myeloma patients with or without skeletal involvement detected using SELDI-TOF mass spectrometry and statistical and machine learning tools. Dis. Markers. 2006;22:245–255. doi: 10.1155/2006/728296. PubMed DOI PMC

Dowling P, et al. Identification of proteins found to be significantly altered when comparing the serum proteome from Multiple Myeloma patients with varying degrees of bone disease. BMC Genomics. 2014;15:904–916. doi: 10.1186/1471-2164-15-904. PubMed DOI PMC

Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods. 2000;43:3–31. doi: 10.1016/S0167-7012(00)00201-3. PubMed DOI

Amato F, et al. Artificial neural networks in medical diagnosis. J. Appl. Biomed. 2013;11:47–58. doi: 10.2478/v10136-012-0031-x. DOI

Valletta E, et al. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks. PLoS ONE. 2016;11:e0147414. doi: 10.1371/journal.pone.0147414. PubMed DOI PMC

Houska J, et al. Tissue profiling by nanogold-mediated mass spectrometry and artificial neural networks in the mouse model of human primary hyperoxaluria 1. J. Appl. Biomed. 2014;12:119–125. doi: 10.1016/j.jab.2013.12.001. DOI

Vanhara P, et al. Intact Cell Mass Spectrometry as a Quality Control Tool for Revealing Minute Phenotypic Changes of Cultured Human Embryonic Stem Cells. Stem Cells Transl. Med. 2018;7:109–114. doi: 10.1002/sctm.17-0107. PubMed DOI PMC

Medriano CAD, Na J, Lim KM, Chung JH, Park YH. Liquid Chromatography Mass Spectrometry-Based Metabolite Pathway Analyses of Myeloma and Non-Hodgkin’s Lymphoma Patients. Cell J. 2017;19:44–54. PubMed PMC

Steiner N, et al. The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets. PLoS ONE. 2018;13:e0202045. doi: 10.1371/journal.pone.0202045. PubMed DOI PMC

Kolarova L, et al. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 2017;28:419–427. doi: 10.1007/s13361-016-1567-x. PubMed DOI

Gibb S, Strimmer K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012;28:2270–2271. doi: 10.1093/bioinformatics/bts447. PubMed DOI

Baptista D, Morgado-Dias F. A survey of artificial neural network training tools. Neural Comput. Appl. 2013;23:609–615. doi: 10.1007/s00521-013-1408-9. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...