Rapid discrimination of multiple myeloma patients by artificial neural networks coupled with mass spectrometry of peripheral blood plasma
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31138828
PubMed Central
PMC6538619
DOI
10.1038/s41598-019-44215-1
PII: 10.1038/s41598-019-44215-1
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- datové soubory jako téma MeSH
- imunoglobuliny krev MeSH
- kostní dřeň metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolické sítě a dráhy MeSH
- metabolom * MeSH
- mnohočetný myelom krev diagnóza patologie MeSH
- neuronové sítě * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- studie případů a kontrol MeSH
- umělá inteligence * statistika a číselné údaje MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- imunoglobuliny MeSH
Multiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed. Matrix-Assisted Laser Desorption/Ionization Time-of Flight Mass Spectrometry (MALDI-TOF MS) is a powerful method that found its applications in clinical diagnostics. Artificial intelligence approaches, such as Artificial Neural Networks (ANNs), can handle non-linear data and provide prediction and classification of variables in multidimensional datasets. In this study, we used MALDI-TOF MS to acquire low mass profiles of peripheral blood plasma obtained from MM patients and healthy donors. Informative patterns in mass spectra served as inputs for ANN that specifically predicted MM samples with high sensitivity (100%), specificity (95%) and accuracy (98%). Thus, mass spectrometry coupled with ANN can provide a minimally invasive approach for MM diagnostics.
Department of Chemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Chemistry Faculty of Science University of Girona Girona Spain
Department of Clinical Hematology University Hospital Brno Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Zobrazit více v PubMed
Attaelmannan M, Levinson SS. Understanding and identifying monoclonal gammopathies. Clin. Chem. 2000;46:1230–1238. PubMed
Kyle RA, Rajkumar SV. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia. 2009;23:3–9. doi: 10.1038/leu.2008.291. PubMed DOI PMC
Rajkumar SV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI
Dimopoulos MA, Terpos E. Multiple myeloma. Ann. Oncol. 2010;21:vii143–150. doi: 10.1093/annonc/mdq370. PubMed DOI
Maluskova D, et al. Epidemiology of Multiple Myeloma in the Czech Republic. Klin.Onkol. 2017;30:35–42. doi: 10.14735/amko20172S35. PubMed DOI
Hajek R, Bryce R, Ro S, Klencke B, Ludwig H. Design and rationale of FOCUS (PX-171-011): a randomized, open-label, phase 3 study of carfilzomib versus best supportive care regimen in patients with relapsed and refractory multiple myeloma (R/R MM) BMC Cancer. 2012;12:415–422. doi: 10.1186/1471-2407-12-415. PubMed DOI PMC
Walker BA, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587–597. doi: 10.1182/blood-2018-10-875138. PubMed DOI PMC
Kubaczkova V, et al. Liquid Biopsies - the Clinics and the Molecules. Klin. Onkol. 2017;30:13–2. doi: 10.14735/amko20172S13. PubMed DOI
Tolson J, et al. Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab. Invest. 2004;84:845–856. doi: 10.1038/labinvest.3700097. PubMed DOI
Jin H, et al. Discrimination Analysis of Mass Spectrometry Proteomics for Lung Adenocarcinoma Detection. Lab Medicine. 2011;42:344–349. doi: 10.1309/LMXWEJV3FFDR0DHH. DOI
Steel LF, et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics. 2003;3:601–609. doi: 10.1002/pmic.200300399. PubMed DOI
Pietrowska M, et al. Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer. J. Transl. Med. 2009;7:60–73. doi: 10.1186/1479-5876-7-60. PubMed DOI PMC
Pietrowska M, et al. Mass spectrometry-based analysis of therapy-related changes in serum proteome patterns of patients with early-stage breast cancer. J. Transl. Med. 2010;8:66–77. doi: 10.1186/1479-5876-8-66. PubMed DOI PMC
Roessler M, et al. Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin. Cancer. Res. 2005;11:6550–6557. doi: 10.1158/1078-0432.CCR-05-0983. PubMed DOI
Grizzle WE, et al. The Early Detection Research Network surface-enhanced laser desorption and ionization prostate cancer detection study: a study in biomarker validation in genitourinary oncology. Urol. Oncol. 2004;22:337–343. doi: 10.1016/j.urolonc.2004.04.008. PubMed DOI
Kozak KR, et al. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: Potential use in diagnosis and prognosis. Proc. Natl. Acad. Sci. USA. 2003;100:12343–12348. doi: 10.1073/pnas.2033602100. PubMed DOI PMC
He AL, et al. Detection of serum tumor markers in multiple myeloma using the CLINPROT system. Int. J. Hematol. 2012;95:668–674. doi: 10.1007/s12185-012-1080-3. PubMed DOI
Puchades-Carrasco L, et al. Multiple myeloma patients have a specific serum metabolomic profile that changes after achieving complete remission. Clin. Cancer Res. 2013;19:4770–4779. doi: 10.1158/1078-0432.CCR-12-2917. PubMed DOI
Wang QT, et al. Construction of A Multiple Myeloma Diagnostic Model by Magnetic Bead-Based MALDI-TOF Mass Spectrometry of Serum and Pattern Recognition Software. Anat. Rec. 2009;292:604–610. doi: 10.1002/ar.20871. PubMed DOI
Zhang HT, Tian EB, Chen YL, Deng HT, Wang QT. Proteomic Analysis for Finding Serum Pathogenic Factors and Potential Biomarkers in Multiple Myeloma. Chin. Med. J. 2015;128:1108–1113. doi: 10.4103/0366-6999.155112. PubMed DOI PMC
Bhattacharyya S, Epstein J, Suva LJ. Biomarkers that discriminate multiple myeloma patients with or without skeletal involvement detected using SELDI-TOF mass spectrometry and statistical and machine learning tools. Dis. Markers. 2006;22:245–255. doi: 10.1155/2006/728296. PubMed DOI PMC
Dowling P, et al. Identification of proteins found to be significantly altered when comparing the serum proteome from Multiple Myeloma patients with varying degrees of bone disease. BMC Genomics. 2014;15:904–916. doi: 10.1186/1471-2164-15-904. PubMed DOI PMC
Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods. 2000;43:3–31. doi: 10.1016/S0167-7012(00)00201-3. PubMed DOI
Amato F, et al. Artificial neural networks in medical diagnosis. J. Appl. Biomed. 2013;11:47–58. doi: 10.2478/v10136-012-0031-x. DOI
Valletta E, et al. Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks. PLoS ONE. 2016;11:e0147414. doi: 10.1371/journal.pone.0147414. PubMed DOI PMC
Houska J, et al. Tissue profiling by nanogold-mediated mass spectrometry and artificial neural networks in the mouse model of human primary hyperoxaluria 1. J. Appl. Biomed. 2014;12:119–125. doi: 10.1016/j.jab.2013.12.001. DOI
Vanhara P, et al. Intact Cell Mass Spectrometry as a Quality Control Tool for Revealing Minute Phenotypic Changes of Cultured Human Embryonic Stem Cells. Stem Cells Transl. Med. 2018;7:109–114. doi: 10.1002/sctm.17-0107. PubMed DOI PMC
Medriano CAD, Na J, Lim KM, Chung JH, Park YH. Liquid Chromatography Mass Spectrometry-Based Metabolite Pathway Analyses of Myeloma and Non-Hodgkin’s Lymphoma Patients. Cell J. 2017;19:44–54. PubMed PMC
Steiner N, et al. The metabolomic plasma profile of myeloma patients is considerably different from healthy subjects and reveals potential new therapeutic targets. PLoS ONE. 2018;13:e0202045. doi: 10.1371/journal.pone.0202045. PubMed DOI PMC
Kolarova L, et al. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry. J. Am. Soc. Mass. Spectrom. 2017;28:419–427. doi: 10.1007/s13361-016-1567-x. PubMed DOI
Gibb S, Strimmer K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012;28:2270–2271. doi: 10.1093/bioinformatics/bts447. PubMed DOI
Baptista D, Morgado-Dias F. A survey of artificial neural network training tools. Neural Comput. Appl. 2013;23:609–615. doi: 10.1007/s00521-013-1408-9. DOI
Detection of early relapse in multiple myeloma patients
Improved Screening of Monoclonal Gammopathy Patients by MALDI-TOF Mass Spectrometry