Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an International Myeloma Working Group Mass Spectrometry Committee Report
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P50 CA186781
NCI NIH HHS - United States
R01 CA168762
NCI NIH HHS - United States
PubMed
33563895
PubMed Central
PMC7873248
DOI
10.1038/s41408-021-00408-4
PII: 10.1038/s41408-021-00408-4
Knihovny.cz E-zdroje
- MeSH
- chromatografie kapalinová metody MeSH
- lehké řetězce imunoglobulinů analýza MeSH
- lidé MeSH
- mnohočetný myelom diagnóza MeSH
- myelomové proteiny analýza MeSH
- nádory plazmocelulární diagnóza MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lehké řetězce imunoglobulinů MeSH
- multiple myeloma M-proteins MeSH Prohlížeč
- myelomové proteiny MeSH
Plasma cell disorders (PCDs) are identified in the clinical lab by detecting the monoclonal immunoglobulin (M-protein) which they produce. Traditionally, serum protein electrophoresis methods have been utilized to detect and isotype M-proteins. Increasing demands to detect low-level disease and new therapeutic monoclonal immunoglobulin treatments have stretched the electrophoretic methods to their analytical limits. Newer techniques based on mass spectrometry (MS) are emerging which have improved clinical and analytical performance. MS is gaining traction into clinical laboratories, and has replaced immunofixation electrophoresis (IFE) in routine practice at one institution. The International Myeloma Working Group (IMWG) Mass Spectrometry Committee reviewed the literature in order to summarize current data and to make recommendations regarding the role of mass spectrometric methods in diagnosing and monitoring patients with myeloma and related disorders. Current literature demonstrates that immune-enrichment of immunoglobulins coupled to intact light chain MALDI-TOF MS has clinical characteristics equivalent in performance to IFE with added benefits of detecting additional risk factors for PCDs, differentiating M-protein from therapeutic antibodies, and is a suitable replacement for IFE for diagnosing and monitoring multiple myeloma and related PCDs. In this paper we discuss the IMWG recommendations for the use of MS in PCDs.
Cancer Science Institute of Singapore NUS Singapore Singapore
Clinica Universidad de Navarra Centro de Investigacion Medica Aplicada IDISNA Pamplona Spain
Department of Hematology Cedars Sinai Outpatient Cancer Center Los Angeles CA USA
Department of Hematology Mayo Clinic Rochester MN USA
Department of Hematology St Olav's University Hospital Trondheim Norway
Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN USA
Faculty of Medicine University of Iceland Reykjavík Iceland
Zobrazit více v PubMed
Rajkumar SV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI
Kyle RA, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clinic Proc. 2003;78:21–33. doi: 10.4065/78.1.21. PubMed DOI
Katzmann JA, et al. Screening panels for detection of monoclonal gammopathies. Clin. Chem. 2009;55:1517–1522. doi: 10.1373/clinchem.2009.126664. PubMed DOI PMC
Bradwell AR, et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin. Chem. 2001;47:673–680. doi: 10.1093/clinchem/47.4.673. PubMed DOI
Katzmann JA, et al. Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin. Chem. 2002;48:1437–1444. doi: 10.1093/clinchem/48.9.1437. PubMed DOI
Dispenzieri A, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 2009;23:215–224. doi: 10.1038/leu.2008.307. PubMed DOI
Dejoie T, et al. Serum free light chains, not urine specimens, should be used to evaluate response in light-chain multiple myeloma. Blood. 2016;128:2941–2948. doi: 10.1182/blood-2016-07-726778. PubMed DOI PMC
Dimopoulos M, et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood. 2011;117:4701–4705. doi: 10.1182/blood-2010-10-299529. PubMed DOI
Kumar S, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17:e328–e346. doi: 10.1016/S1470-2045(16)30206-6. PubMed DOI
Rawstron AC, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J. Clin. Oncol. 2013;31:2540–2547. doi: 10.1200/JCO.2012.46.2119. PubMed DOI
Martinez-Lopez J, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123:3073–3079. doi: 10.1182/blood-2014-01-550020. PubMed DOI PMC
Mills JR, Murray DL. Identification of friend or foe: the laboratory challenge of differentiating M-proteins from monoclonal antibody therapies. J. Appl. Lab. Med. 2017;1:421–431. doi: 10.1373/jalm.2016.020784. PubMed DOI
Zajec M, et al. Mass spectrometry for identification, monitoring, and minimal residual disease detection of M-proteins. Clin. Chem. 2020;66:421–433. doi: 10.1093/clinchem/hvz041. PubMed DOI
Dekker LJM, et al. An antibody-based biomarker discovery method by mass spectrometry sequencing of complementarity determining regions. Anal. Bioanal. Chem. 2010;399:1081–1091. doi: 10.1007/s00216-010-4361-9. PubMed DOI PMC
Barnidge DR, et al. Monitoring M-proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS. J. Proteome Res. 2014;13:1905–1910. doi: 10.1021/pr5000544. PubMed DOI
Bergen HR, et al. Clonotypic light chain peptides identified for monitoring minimal residual disease in multiple myeloma without bone marrow aspiration. Clin. Chem. 2016;62:243–251. doi: 10.1373/clinchem.2015.242651. PubMed DOI PMC
Zajec M, et al. Development of a targeted mass-spectrometry serum assay to quantify M-protein in the presence of therapeutic monoclonal antibodies. J. Proteome Res. 2018;17:1326–1333. doi: 10.1021/acs.jproteome.7b00890. PubMed DOI
Remily-Wood ER, et al. Quantification of peptides from immunoglobulin constant and variable regions by LC-MRM MS for assessment of multiple myeloma patients. Proteomics Clin. Appl. 2014;8:783–795. doi: 10.1002/prca.201300077. PubMed DOI PMC
Barnidge DR, et al. Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J. Proteome Res. 2014;13:1419–1427. doi: 10.1021/pr400985k. PubMed DOI
Mills JR, et al. Comprehensive assessment of M-proteins using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin. Chem. 2016;62:1334–1344. doi: 10.1373/clinchem.2015.253740. PubMed DOI
Martins CO, et al. Mass spectrometry-based method targeting Ig variable regions for assessment of minimal residual disease in multiple myeloma. J. Mol. Diagn. 2020;22:901–911. doi: 10.1016/j.jmoldx.2020.04.002. PubMed DOI PMC
Zajec M, et al. Integrating serum protein electrophoresis with mass spectrometry, a new workflow for M-protein detection and quantification. J. Proteome Res. 2020;19:2845–2853. doi: 10.1021/acs.jproteome.9b00705. PubMed DOI
Barnidge DR, et al. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry. J. Proteome Res. 2014;13:5198–5205. doi: 10.1021/pr5005967. PubMed DOI
Barnidge DR, Griffin TJ, Murray DL. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to detect monoclonal immunoglobuli light chains in serum and urine. Rapid Commun. Mass Spectrom. 2015;29:1–4. doi: 10.1002/rcm.7314. PubMed DOI
Kohlhagen MC, et al. Screening method for M-proteins in serum using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin. Chem. 2016;62:1345–1352. doi: 10.1373/clinchem.2015.253781. PubMed DOI
Sepiashvili L, et al. Direct detection of monoclonal free light chains in serum by use of immunoenrichment-coupled MALDI-TOF mass spectrometry. Clin. Chem. 2019;65:1015–1022. doi: 10.1373/clinchem.2018.299461. PubMed DOI
Kohlhagen MC, et al. Automation and validation of a MALDI-TOF MS (Mass-Fix) replacement of immunofixation electrophoresis in the clinical lab. Clin. Chem. Lab. Med. 2020;59:155–163. doi: 10.1515/cclm-2020-0581. PubMed DOI
Milani P, et al. The utility of MASS-FIX to detect and monitor monoclonal proteins in the clinic. Am. J. Hematol. 2017;92:772–779. doi: 10.1002/ajh.24772. PubMed DOI
Sharpley FA, et al. A novel mass spectrometry method to identify the serum monoclonal light chain component in systemic light chain amyloidosis. Blood Cancer J. 2019;9:16. doi: 10.1038/s41408-019-0180-1. PubMed DOI PMC
Dispenzieri A, et al. Blood mass spectrometry detects residual disease better than standard techniques in light-chain amyloidosis. Blood Cancer J. 2020;10:20. doi: 10.1038/s41408-020-0291-8. PubMed DOI PMC
Thoren KL, et al. Identification of gamma heavy chain disease using MALDI-TOF mass spectrometry. Clin. Biochem. 2020;77:57–61. doi: 10.1016/j.clinbiochem.2019.12.010. PubMed DOI PMC
Kyle RA, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 2002;346:564–569. doi: 10.1056/NEJMoa01133202. PubMed DOI
Murray DL, et al. Detection and prevalence of monoclonal gammopathy of undetermined significance: a study utilizing mass spectrometry-based monoclonal immunoglobulin rapid accurate mass measurement. Blood Cancer J. 2019;9:102. doi: 10.1038/s41408-019-0263-z. PubMed DOI PMC
Puig N, et al. Qip-mass spectrometry in high risk smoldering multiple myeloma patients included in the GEM-CESAR Trial: comparison with conventional and minimal residual disease IMWG response assessment. Blood. 2019;134:581.
Moore LM, Cho S, Thoren KL. MALDI-TOF mass spectrometry distinguishes daratumumab from M-proteins. Clin. Chim. Acta. 2019;492:91–94. doi: 10.1016/j.cca.2019.02.017. PubMed DOI PMC
Mills JR, et al. A universal solution for eliminating false positives in myeloma due to therapeutic monoclonal antibody interference. Blood. 2018;132:670–672. doi: 10.1182/blood-2018-05-848986. PubMed DOI
Kumar S, et al. Assay to rapidly screen for immunoglobulin light chain glycosylation: a potential path to earlier AL diagnosis for a subset of patients. Leukemia. 2019;33:254–257. doi: 10.1038/s41375-018-0194-x. PubMed DOI
Sidana S, et al. Glycosylation of immunoglobulin light chains is highly prevalent in cold agglutinin disease. Am. J. Hematol. 2020;95:E222–E225. PubMed
Dispenzieri A, et al. N-glycosylation of monoclonal light chains on routine MASS-FIX testing is a risk factor for MGUS progression. Leukemia. 2020;34:2749–2753. doi: 10.1038/s41375-020-0940-8. PubMed DOI PMC
Kourelis T, et al. MASS-FIX may allow identification of patients at risk for light chain amyloidosis before the onset of symptoms. Am. J. Hematol. 2018;93:E368–E370. doi: 10.1002/ajh.25244. PubMed DOI
Mills JR, Barnidge DR, Dispenzieri A, Murray DL. High sensitivity blood-based M-protein detection in sCR patients with multiple myeloma. Blood Cancer J. 2017;7:e590. doi: 10.1038/bcj.2017.75. PubMed DOI PMC
Eveillard M, et al. Comparison of MALDI-TOF mass spectrometry analysis of peripheral blood and bone marrow-based flow cytometry for tracking measurable residual disease in patients with multiple myeloma. Br. J. Haematol. 2020;189:904–907. doi: 10.1111/bjh.16443. PubMed DOI PMC
Detection of early relapse in multiple myeloma patients
Improved Screening of Monoclonal Gammopathy Patients by MALDI-TOF Mass Spectrometry
Epidemiology, genetics and treatment of multiple myeloma and precursor diseases