Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an International Myeloma Working Group Mass Spectrometry Committee Report

. 2021 Feb 01 ; 11 (2) : 24. [epub] 20210201

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33563895

Grantová podpora
P50 CA186781 NCI NIH HHS - United States
R01 CA168762 NCI NIH HHS - United States

Odkazy

PubMed 33563895
PubMed Central PMC7873248
DOI 10.1038/s41408-021-00408-4
PII: 10.1038/s41408-021-00408-4
Knihovny.cz E-zdroje

Plasma cell disorders (PCDs) are identified in the clinical lab by detecting the monoclonal immunoglobulin (M-protein) which they produce. Traditionally, serum protein electrophoresis methods have been utilized to detect and isotype M-proteins. Increasing demands to detect low-level disease and new therapeutic monoclonal immunoglobulin treatments have stretched the electrophoretic methods to their analytical limits. Newer techniques based on mass spectrometry (MS) are emerging which have improved clinical and analytical performance. MS is gaining traction into clinical laboratories, and has replaced immunofixation electrophoresis (IFE) in routine practice at one institution. The International Myeloma Working Group (IMWG) Mass Spectrometry Committee reviewed the literature in order to summarize current data and to make recommendations regarding the role of mass spectrometric methods in diagnosing and monitoring patients with myeloma and related disorders. Current literature demonstrates that immune-enrichment of immunoglobulins coupled to intact light chain MALDI-TOF MS has clinical characteristics equivalent in performance to IFE with added benefits of detecting additional risk factors for PCDs, differentiating M-protein from therapeutic antibodies, and is a suitable replacement for IFE for diagnosing and monitoring multiple myeloma and related PCDs. In this paper we discuss the IMWG recommendations for the use of MS in PCDs.

Zobrazit více v PubMed

Rajkumar SV, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548. doi: 10.1016/S1470-2045(14)70442-5. PubMed DOI

Kyle RA, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clinic Proc. 2003;78:21–33. doi: 10.4065/78.1.21. PubMed DOI

Katzmann JA, et al. Screening panels for detection of monoclonal gammopathies. Clin. Chem. 2009;55:1517–1522. doi: 10.1373/clinchem.2009.126664. PubMed DOI PMC

Bradwell AR, et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin. Chem. 2001;47:673–680. doi: 10.1093/clinchem/47.4.673. PubMed DOI

Katzmann JA, et al. Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin. Chem. 2002;48:1437–1444. doi: 10.1093/clinchem/48.9.1437. PubMed DOI

Dispenzieri A, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 2009;23:215–224. doi: 10.1038/leu.2008.307. PubMed DOI

Dejoie T, et al. Serum free light chains, not urine specimens, should be used to evaluate response in light-chain multiple myeloma. Blood. 2016;128:2941–2948. doi: 10.1182/blood-2016-07-726778. PubMed DOI PMC

Dimopoulos M, et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood. 2011;117:4701–4705. doi: 10.1182/blood-2010-10-299529. PubMed DOI

Kumar S, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17:e328–e346. doi: 10.1016/S1470-2045(16)30206-6. PubMed DOI

Rawstron AC, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J. Clin. Oncol. 2013;31:2540–2547. doi: 10.1200/JCO.2012.46.2119. PubMed DOI

Martinez-Lopez J, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123:3073–3079. doi: 10.1182/blood-2014-01-550020. PubMed DOI PMC

Mills JR, Murray DL. Identification of friend or foe: the laboratory challenge of differentiating M-proteins from monoclonal antibody therapies. J. Appl. Lab. Med. 2017;1:421–431. doi: 10.1373/jalm.2016.020784. PubMed DOI

Zajec M, et al. Mass spectrometry for identification, monitoring, and minimal residual disease detection of M-proteins. Clin. Chem. 2020;66:421–433. doi: 10.1093/clinchem/hvz041. PubMed DOI

Dekker LJM, et al. An antibody-based biomarker discovery method by mass spectrometry sequencing of complementarity determining regions. Anal. Bioanal. Chem. 2010;399:1081–1091. doi: 10.1007/s00216-010-4361-9. PubMed DOI PMC

Barnidge DR, et al. Monitoring M-proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS. J. Proteome Res. 2014;13:1905–1910. doi: 10.1021/pr5000544. PubMed DOI

Bergen HR, et al. Clonotypic light chain peptides identified for monitoring minimal residual disease in multiple myeloma without bone marrow aspiration. Clin. Chem. 2016;62:243–251. doi: 10.1373/clinchem.2015.242651. PubMed DOI PMC

Zajec M, et al. Development of a targeted mass-spectrometry serum assay to quantify M-protein in the presence of therapeutic monoclonal antibodies. J. Proteome Res. 2018;17:1326–1333. doi: 10.1021/acs.jproteome.7b00890. PubMed DOI

Remily-Wood ER, et al. Quantification of peptides from immunoglobulin constant and variable regions by LC-MRM MS for assessment of multiple myeloma patients. Proteomics Clin. Appl. 2014;8:783–795. doi: 10.1002/prca.201300077. PubMed DOI PMC

Barnidge DR, et al. Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J. Proteome Res. 2014;13:1419–1427. doi: 10.1021/pr400985k. PubMed DOI

Mills JR, et al. Comprehensive assessment of M-proteins using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin. Chem. 2016;62:1334–1344. doi: 10.1373/clinchem.2015.253740. PubMed DOI

Martins CO, et al. Mass spectrometry-based method targeting Ig variable regions for assessment of minimal residual disease in multiple myeloma. J. Mol. Diagn. 2020;22:901–911. doi: 10.1016/j.jmoldx.2020.04.002. PubMed DOI PMC

Zajec M, et al. Integrating serum protein electrophoresis with mass spectrometry, a new workflow for M-protein detection and quantification. J. Proteome Res. 2020;19:2845–2853. doi: 10.1021/acs.jproteome.9b00705. PubMed DOI

Barnidge DR, et al. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry. J. Proteome Res. 2014;13:5198–5205. doi: 10.1021/pr5005967. PubMed DOI

Barnidge DR, Griffin TJ, Murray DL. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to detect monoclonal immunoglobuli light chains in serum and urine. Rapid Commun. Mass Spectrom. 2015;29:1–4. doi: 10.1002/rcm.7314. PubMed DOI

Kohlhagen MC, et al. Screening method for M-proteins in serum using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin. Chem. 2016;62:1345–1352. doi: 10.1373/clinchem.2015.253781. PubMed DOI

Sepiashvili L, et al. Direct detection of monoclonal free light chains in serum by use of immunoenrichment-coupled MALDI-TOF mass spectrometry. Clin. Chem. 2019;65:1015–1022. doi: 10.1373/clinchem.2018.299461. PubMed DOI

Kohlhagen MC, et al. Automation and validation of a MALDI-TOF MS (Mass-Fix) replacement of immunofixation electrophoresis in the clinical lab. Clin. Chem. Lab. Med. 2020;59:155–163. doi: 10.1515/cclm-2020-0581. PubMed DOI

Milani P, et al. The utility of MASS-FIX to detect and monitor monoclonal proteins in the clinic. Am. J. Hematol. 2017;92:772–779. doi: 10.1002/ajh.24772. PubMed DOI

Sharpley FA, et al. A novel mass spectrometry method to identify the serum monoclonal light chain component in systemic light chain amyloidosis. Blood Cancer J. 2019;9:16. doi: 10.1038/s41408-019-0180-1. PubMed DOI PMC

Dispenzieri A, et al. Blood mass spectrometry detects residual disease better than standard techniques in light-chain amyloidosis. Blood Cancer J. 2020;10:20. doi: 10.1038/s41408-020-0291-8. PubMed DOI PMC

Thoren KL, et al. Identification of gamma heavy chain disease using MALDI-TOF mass spectrometry. Clin. Biochem. 2020;77:57–61. doi: 10.1016/j.clinbiochem.2019.12.010. PubMed DOI PMC

Kyle RA, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 2002;346:564–569. doi: 10.1056/NEJMoa01133202. PubMed DOI

Murray DL, et al. Detection and prevalence of monoclonal gammopathy of undetermined significance: a study utilizing mass spectrometry-based monoclonal immunoglobulin rapid accurate mass measurement. Blood Cancer J. 2019;9:102. doi: 10.1038/s41408-019-0263-z. PubMed DOI PMC

Puig N, et al. Qip-mass spectrometry in high risk smoldering multiple myeloma patients included in the GEM-CESAR Trial: comparison with conventional and minimal residual disease IMWG response assessment. Blood. 2019;134:581.

Moore LM, Cho S, Thoren KL. MALDI-TOF mass spectrometry distinguishes daratumumab from M-proteins. Clin. Chim. Acta. 2019;492:91–94. doi: 10.1016/j.cca.2019.02.017. PubMed DOI PMC

Mills JR, et al. A universal solution for eliminating false positives in myeloma due to therapeutic monoclonal antibody interference. Blood. 2018;132:670–672. doi: 10.1182/blood-2018-05-848986. PubMed DOI

Kumar S, et al. Assay to rapidly screen for immunoglobulin light chain glycosylation: a potential path to earlier AL diagnosis for a subset of patients. Leukemia. 2019;33:254–257. doi: 10.1038/s41375-018-0194-x. PubMed DOI

Sidana S, et al. Glycosylation of immunoglobulin light chains is highly prevalent in cold agglutinin disease. Am. J. Hematol. 2020;95:E222–E225. PubMed

Dispenzieri A, et al. N-glycosylation of monoclonal light chains on routine MASS-FIX testing is a risk factor for MGUS progression. Leukemia. 2020;34:2749–2753. doi: 10.1038/s41375-020-0940-8. PubMed DOI PMC

Kourelis T, et al. MASS-FIX may allow identification of patients at risk for light chain amyloidosis before the onset of symptoms. Am. J. Hematol. 2018;93:E368–E370. doi: 10.1002/ajh.25244. PubMed DOI

Mills JR, Barnidge DR, Dispenzieri A, Murray DL. High sensitivity blood-based M-protein detection in sCR patients with multiple myeloma. Blood Cancer J. 2017;7:e590. doi: 10.1038/bcj.2017.75. PubMed DOI PMC

Eveillard M, et al. Comparison of MALDI-TOF mass spectrometry analysis of peripheral blood and bone marrow-based flow cytometry for tracking measurable residual disease in patients with multiple myeloma. Br. J. Haematol. 2020;189:904–907. doi: 10.1111/bjh.16443. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...