Anti-CD38 antibody therapy for patients with relapsed/refractory multiple myeloma: differential mechanisms of action and recent clinical trial outcomes

. 2022 Oct ; 101 (10) : 2123-2137. [epub] 20220809

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35943588

Grantová podpora
29957 Cancer Research UK - United Kingdom

Odkazy

PubMed 35943588
PubMed Central PMC9463192
DOI 10.1007/s00277-022-04917-5
PII: 10.1007/s00277-022-04917-5
Knihovny.cz E-zdroje

CD38 is a transmembrane glycoprotein that functions both as a receptor and an ectoenzyme, playing key roles in the regulation of calcium signaling and migration of immune cells to tumor microenvironments. High expression on multiple myeloma (MM) cells and limited expression on normal cells makes CD38 an ideal target for the treatment of MM patients. Two monoclonal antibodies directed at CD38, isatuximab and daratumumab, are available for use in patients with relapsed and/or refractory MM (RRMM); daratumumab is also approved in newly diagnosed MM and light-chain amyloidosis. Clinical experience has shown that anti-CD38 antibody therapy is transforming treatment of MM owing to its anti-myeloma efficacy and manageable safety profile. Isatuximab and daratumumab possess similarities and differences in their mechanisms of action, likely imparted by their binding to distinct, non-overlapping epitopes on the CD38 molecule. In this review, we present the mechanistic properties of these two antibodies and outline available evidence on their abilities to induce adaptive immune responses and modulate the bone marrow niche in MM. Further, we discuss differences in regulatory labeling between these two agents and analyze recent key clinical trial results, including evidence in patients with underlying renal impairment and other poor prognostic factors. Finally, we describe the limited existing evidence for the use of isatuximab or daratumumab after disease progression on prior anti-CD38 mono- or combination therapy, highlighting the need for additional clinical evaluations to define optimal anti-CD38 antibody therapy selection and sequencing in RRMM.

Clinical Haematology Service St Vincent's Hospital University of Melbourne Melbourne Australia

Department of Haematology University College Hospitals NHS Foundation Trust London UK

Department of Hematology and Oncology Nagoya City University Nagoya Japan

Department of Hematology CHU Universite de Lille Lille France

Department of Hematology College of Medicine Catholic Hematology Hospital and Leukemia Research Institute Seoul St Mary's Hospital The Catholic University of Korea Seoul Korea

Department of Hematology Institut Universitaire du Cancer de Toulouse Toulouse France

Department of Medical Oncology Dana Farber Cancer Institute Boston MA USA

Department of Medical Sciences University of Torino Medical School Fondazione Ricerca Molinette Turin Italy

Department of Medicine Department of Hematology 1st Faculty of Medicine Charles University and General Hospital Prague Czech Republic

Department of Medicine University of California at San Francisco San Francisco CA USA

Division of Cancer Therapeutics The Institute of Cancer Research London UK

Division of Hematology and Medical Oncology Tisch Cancer Institute Mount Sinai New York NY USA

Hospital Universitario Marqués de Valdecilla Universidad de Cantabria Santander Spain

Oslo Myeloma Center Department of Hematology KG Jebsen Center for B Cell Malignancies Oslo University Hospital University of Oslo Oslo Norway

Service d'Hématologie Et Thérapie Cellulaire CHU and CIC Inserm 1402 Poitiers Cedex France

University Medical Center Hamburg Eppendorf Hamburg Germany

Zobrazit více v PubMed

Deaglio S, Vaisitti T, Billington R, Bergui L, Omede P, Genazzani AA, et al. CD38/CD19: a lipid raft-dependent signaling complex in human B cells. Blood. 2007;109:5390–5398. doi: 10.1182/blood-2006-12-061812. PubMed DOI

Deaglio S, Mehta K, Malavasi F. Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk Res. 2001;25:1–12. doi: 10.1016/S0145-2126(00)00093-X. PubMed DOI

Liu Q, Kriksunov IA, Graeff R, Munshi C, Lee HC, Hao Q. Crystal structure of human CD38 extracellular domain. Structure. 2005;13:1331–1339. doi: 10.1016/j.str.2005.05.012. PubMed DOI

Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008;88:841–886. doi: 10.1152/physrev.00035.2007. PubMed DOI

van de Donk N, Richardson PG, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131:13–29. doi: 10.1182/blood-2017-06-740944. PubMed DOI

Deaglio S, Morra M, Mallone R, Ausiello CM, Prager E, Garbarino G, et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol. 1998;160:395–402. PubMed

Munshi C, Aarhus R, Graeff R, Walseth TF, Levitt D, Lee HC. Identification of the enzymatic active site of CD38 by site-directed mutagenesis. J Biol Chem. 2000;275:21566–21571. doi: 10.1074/jbc.M909365199. PubMed DOI

Lee HC, Walseth TF, Bratt GT, Hayes RN, Clapper DL. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989;264:1608–1615. doi: 10.1016/S0021-9258(18)94230-4. PubMed DOI

Lee HC, Aarhus R, Levitt D. The crystal structure of cyclic ADP-ribose. Nat Struct Biol. 1994;1:143–144. doi: 10.1038/nsb0394-143. PubMed DOI

Chillemi A, Quarona V, Antonioli L, Ferrari D, Horenstein AL, Malavasi F. Roles and modalities of ectonucleotidases in remodeling the multiple myeloma niche. Front Immunol. 2017;8:305. doi: 10.3389/fimmu.2017.00305. PubMed DOI PMC

Horenstein AL, Faini AC, Morandi F, Bracci C, Lanza F, Giuliani N, et al. The circular life of human CD38: from basic science to clinics and back. Molecules. 2020;25:4844. doi: 10.3390/molecules25204844. PubMed DOI PMC

European Commission approves Sarclisa® (isatuximab) for adults with relapsed and refractory multiple myeloma. Press release. Sanofi; June 2, 2020. Accessed March 16, 2022. https://www.sanofi.com/en/media-room/press-releases/2020/2020-06-02-12-47-38

Darzalex. Prescribing information. Janssen; March 2022. Accessed March 16, 2022. https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/DARZALEX-pi.pdf

Darzalex Faspro. Prescribing information. Janssen; January 2022. Accessed March 16, 2022. https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/DARZALEX+Faspro-pi.pdf

Sarclisa. Prescribing information. Sanofi; March 2021. Accessed March 16, 2022. https://products.sanofi.us/Sarclisa/sarclisa.pdf

European Medicines Agency. Sarclisa, INN-Ixatuximab. Summary of product characteristics. 2021. Accessed March 16, 2022. https://www.ema.europa.eu/en/documents/product-information/sarclisa-epar-product-information_en.pdf

European Commission grants marketing authorisation for Darzalex (daratumumab) subcutaneous formulation for all currently approved daratumumab intravenous formulation indications. Press release. Janssen; June 4, 2020. Accessed March 16, 2022. https://myelomabeacon.org/pr/2020/06/04/european-approval-subcutaneous-darzalex/

Darzalex. European Medicines Agency. Updated August, 2020. Accessed March 16, 2022. https://www.ema.europa.eu/en/documents/overview/darzalex-epar-medicine-overview_en.pdf

Martin TG, Corzo K, Chiron M, Velde HV, Abbadessa G, Campana F, et al. Therapeutic opportunities with pharmacological inhibition of CD38 with isatuximab. Cells. 2019;8:1522. doi: 10.3390/cells8121522. PubMed DOI PMC

Wetzel M, Nicolazzi C, Cai T, Vallee F, Deckert J, Dumontet C et al (2013) Preclinical characterization of SAR650984, a humanized anti-CD38 antibody for the treatment of multiple myeloma. International Myeloma Workshops: Kyoto, Japan. P288.

Deckert J, Wetzel MC, Bartle LM, Skaletskaya A, Goldmacher VS, Vallée F, et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. Clin Cancer Res. 2014;20:4574–4583. doi: 10.1158/1078-0432.CCR-14-0695. PubMed DOI

Lammerts van Bueren J, Jakobs D, Kaldenhoven N, Roza M, Hiddingh S, Meesters J, et al. Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. Blood. 2014;124:3474. doi: 10.1182/blood.V124.21.3474.3474. DOI

van de Donk NW, Janmaat ML, Mutis T, Lammerts van Bueren JJ, Ahmadi T, Sasser AK, et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev. 2016;270:95–112. doi: 10.1111/imr.12389. PubMed DOI PMC

Moreno L, Perez C, Zabaleta A, Manrique I, Alignani D, Ajona D, et al. The mechanism of action of the anti-CD38 monoclonal antibody isatuximab in multiple myeloma. Clin Cancer Res. 2019;25:3176–3187. doi: 10.1158/1078-0432.CCR-18-1597. PubMed DOI

Horenstein AL, Chillemi A, Quarona V, Zito A, Roato I, Morandi F, et al. NAD+-metabolizing ectoenzymes in remodeling tumor-host interactions: the human myeloma model. Cells. 2015;4:520–537. doi: 10.3390/cells4030520. PubMed DOI PMC

Malavasi F, Faini A, Morandi F, Castella B, Incarnato D, Oliviero S, et al. Molecular dynamics of targeting CD38 in multiple myeloma. Br J Haematol. 2021;193:581–591. doi: 10.1111/bjh.17329. PubMed DOI

Overdijk MB, Jansen JH, Nederend M, Lammerts van Bueren JJ, Groen RW, Parren PW, et al. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via Fcγ receptor-mediated cross-linking. J Immunol. 2016;197:807–813. doi: 10.4049/jimmunol.1501351. PubMed DOI

Kinder M, Bahlis N, Malavasi F, de Goeij B, Babich A, Sendecki J, et al. Comparison of CD38 antibodies in vitro and ex vivo mechanisms of action in multiple myeloma. Haematologica. 2021;106:2004–2008. doi: 10.3324/haematol.2020.268656. PubMed DOI PMC

Jiang H, Acharya C, An G, Zhong M, Feng X, Wang L, et al. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia. 2016;30:399–408. doi: 10.1038/leu.2015.240. PubMed DOI

de Weers M, Tai YT, van der Veer MS, Bakker JM, Vink T, Jacobs DC, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186:1840–1848. doi: 10.4049/jimmunol.1003032. PubMed DOI

Feng X, Zhang L, Acharya C, An G, Wen K, Qiu L, et al. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin Cancer Res. 2017;23:4290–4300. doi: 10.1158/1078-0432.CCR-16-3192. PubMed DOI PMC

Zhu C, Song Z, Wang A, Srinivasan S, Yang G, Greco R, et al. Isatuximab acts through Fc-dependent, independent, and direct pathways to kill multiple myeloma cells. Front Immunol. 2020;11:1771. doi: 10.3389/fimmu.2020.01771. PubMed DOI PMC

Viola D, Dona A, Caserta E, Troadec E, Besi F, McDonald T, et al. Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting. Leukemia. 2021;35:189–200. doi: 10.1038/s41375-020-0810-4. PubMed DOI PMC

Golay J, Taylor RP. The role of complement in the mechanism of action of therapeutic anti-cancer mAbs. Antibodies (Basel) 2020;9:58. doi: 10.3390/antib9040058. PubMed DOI PMC

Nijhof IS, Casneuf T, van Velzen J, van Kessel B, Axel AE, Syed K, et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood. 2016;128:959–970. doi: 10.1182/blood-2016-03-703439. PubMed DOI

Overdijk MB, Verploegen S, Bögels M, van Egmond M, Lammerts van Bueren JJ, Mutis T, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015;7:311–321. doi: 10.1080/19420862.2015.1007813. PubMed DOI PMC

Neri P, Maity R, Tagoug I, McCulloch S, Duggan P, Jimenez-Zepeda V, et al. Immunome single cell profiling reveals T cell exhaustion with upregulation of checkpoint inhibitors LAG3 and Tigit on marrow infiltrating T lymphocytes in daratumumab and IMiDs resistant patients. Blood. 2018;132(Suppl. 1):242. doi: 10.1182/blood-2018-99-117531. DOI

Platzer B, Stout M, Fiebiger E. Antigen cross-presentation of immune complexes. Front Immunol. 2014;5:140. doi: 10.3389/fimmu.2014.00140. PubMed DOI PMC

Atanackovic D, Yousef S, Shorter C, Tantravahi SK, Steinbach M, Iglesias F, et al. In vivo vaccination effect in multiple myeloma patients treated with the monoclonal antibody isatuximab. Leukemia. 2020;34:317–321. doi: 10.1038/s41375-019-0536-3. PubMed DOI

Horenstein A, Quarona V, Toscani D, Costa F, Chillemi A, Pistoia V, et al. Adenosine generated in the bone marrow niche through a CD38-mediated pathway correlates with progression of human myeloma. Mol Med. 2016;22:694–704. doi: 10.2119/molmed.2016.00198. PubMed DOI PMC

Sitkovsky M, Ohta A. Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer. J Mol Med (Berl) 2013;91:147–155. doi: 10.1007/s00109-013-1001-9. PubMed DOI PMC

Calabretta E, Carlo-Stella C. The many facets of CD38 in lymphoma: from tumor-microenvironment cell interactions to acquired resistance to immunotherapy. Cells. 2020;9:802. doi: 10.3390/cells9040802. PubMed DOI PMC

van de Donk N, Usmani SZ. CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance. Front Immunol. 2018;9:2134. doi: 10.3389/fimmu.2018.02134. PubMed DOI PMC

Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128:384–394. doi: 10.1182/blood-2015-12-687749. PubMed DOI PMC

Dimopoulos M, Bringhen S, Anttila P, Capra M, Cavo M, Cole C, et al. Isatuximab as monotherapy and combined with dexamethasone in patients with relapsed/refractory multiple myeloma. Blood. 2021;137:1154–1165. doi: 10.1182/blood.2020008209. PubMed DOI PMC

Richardson PG, Beksaç M, Špička I, Mikhael J. Isatuximab for the treatment of relapsed/refractory multiple myeloma. Expert Opin Biol Ther. 2020;20:1395–1404. doi: 10.1080/14712598.2021.1841747. PubMed DOI

Chapuy CI, Nicholson RT, Aguad MD, Chapuy B, Laubach JP, Richardson PG, et al. Resolving the daratumumab interference with blood compatibility testing. Transfusion. 2015;55:1545–1554. doi: 10.1111/trf.13069. PubMed DOI

Attal M, Richardson PG, Rajkumar SV, San-Miguel J, Beksac M, Spicka I, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019;394:2096–2107. doi: 10.1016/S0140-6736(19)32556-5. PubMed DOI

Song Z, Bedel O, Zhang B, Hopke J, Deng G, Macé S, et al. Anti-CD38 interference with blood compatibility testing: differentiating isatuximab and daratumumab via functional epitope mapping. Cancer Res. 2021;81(Suppl. 13):1888–1888. doi: 10.1158/1538-7445.AM2021-1888. PubMed DOI PMC

Lancman G, Arinsburg S, Jhang J, Cho HJ, Jagannath S, Madduri D, et al. Blood transfusion management for patients treated with anti-CD38 monoclonal antibodies. Front Immunol. 2018;9:2616. doi: 10.3389/fimmu.2018.02616. PubMed DOI PMC

Quach H, Benson S, Haysom H, Wilkes A, Zacher N, Cole-Sinclair M, et al. Considerations for pre-transfusion immunohaematology testing in patients receiving the anti-CD38 monoclonal antibody daratumumab for the treatment of multiple myeloma. Intern Med J. 2018;48:210–220. doi: 10.1111/imj.13707. PubMed DOI

Izaguirre EC, Del Mar L-H, González LL, CA C, New method for overcoming the interference produced by anti-CD38 monoclonal antibodies in compatibility testing. Blood Transfus. 2020;18:290–294. PubMed PMC

van de Donk NWOH, El Haddad O, et al. Interference of daratumumab in monitoring multiple myeloma patients using serum immunofixation electrophoresis can be abrogated using the daratumumab IFE reflex assay (DIRA) Clin Chem Lab Med. 2016;54:1105–1109. PubMed

Moreau P, Dimopoulos MA, Mikhael J, Yong K, Capra M, Facon T, et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial. Lancet. 2021;397:2361–2371. doi: 10.1016/S0140-6736(21)00592-4. PubMed DOI

Martin T, Mikhael J, Hajek R, Kim K, Suzuki K, Hulin C, et al. Depth of response and response kinetics of isatuximab plus carfilzomib and dexamethasone in relapsed multiple myeloma: IKEMA interim analysis. Blood. 2020;136:7–8. doi: 10.1182/blood-2020-137681. PubMed DOI PMC

Murray D, Puig N, Kristinsson S, Usmani S, Dispenzieri A, Bianchi G, et al. Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an International Myeloma Working Group Mass Spectrometry Committee Report. Blood Cancer J. 2021;11:24. doi: 10.1038/s41408-021-00408-4. PubMed DOI PMC

Moreau P, Parmar G, Prince M, Ocio E, Karanes C, Madan S et al 2021 A multi-center, Phase 1b study to assess the safety, pharmacokinetics and efficacy of subcutaneous isatuximab plus pomalidomide and dexamethasone, in patients with relapsed/refractory multiple myeloma. International Myeloma Workshop - XVIII. Abstract P-207

Usmani S, Karanes C, Bensinger W, D’Souza A, Raje N, Tuchman S, et al. Final results of a Phase 1b study of isatuximab short-duration fixed-volume infusion combination therapy for RRMM. Leukemia. 2021;35:3526–3533. doi: 10.1038/s41375-021-01262-w. PubMed DOI PMC

Trakada G, Kastritis E, Gavriatopoulou M, Velentza L, Fotiou D, Ziogas DC, et al. Pulmonary function abnormalities are common in patients with multiple myeloma and are independently associated with worse outcome. Ann Hematol. 2019;98:1427–1434. doi: 10.1007/s00277-019-03641-x. PubMed DOI

Chari A, Suvannasankha A, Fay JW, Arnulf B, Kaufman JL, Ifthikharuddin JJ, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130:974–981. doi: 10.1182/blood-2017-05-785246. PubMed DOI PMC

Dimopoulos M, Terpos E, Boccadoro M, Delimpasi S, Beksac M, Katodritou E, et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22:801–812. doi: 10.1016/S1470-2045(21)00128-5. PubMed DOI

Study of carfilzomib, daratumumab and dexamethasone for patients with relapsed and/or refractory multiple myeloma (CANDOR). ClinicalTrials.gov identifier: NCT03158688. Accessed March 16, 2022. https://clinicaltrials.gov/ct2/show/NCT03158688

Multinational clinical study comparing isatuximab, carfilzomib and dexamethasone to carfilzomib and dexamethasone in relapse and/or refractory multiple myeloma patients (IKEMA). ClinicalTrials.gov identifier: NCT03275285. Accessed March 16, 2022. https://clinicaltrials.gov/ct2/show/NCT03275285

Moreau P, Dimopoulos MA, Mikhael J, Yong K, Capra M, Facon T et al 2020 Isatuximab plus carfilzomib and dexamethasone vs carfilzomib and dexamethasone in relapsed/refractory multiple myeloma (IKEMA): interim analysis of a phase 3, randomized, open-label study. European Hematology Association; June 14, 2020. Abstract LB2603

Usmani SZ, Weiss BM, Plesner T, Bahlis NJ, Belch A, Lonial S, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood. 2016;128:37–44. doi: 10.1182/blood-2016-03-705210. PubMed DOI PMC

Mikhael J, Richardson P, Usmani SZ, Raje N, Bensinger W, Karanes C, et al. A phase 1b study of isatuximab plus pomalidomide/dexamethasone in relapsed/refractory multiple myeloma. Blood. 2019;134:123–133. doi: 10.1182/blood-2019-02-895193. PubMed DOI PMC

Offidani M, Corvatta L, Morè S, Nappi D, Martinelli G, Olivieri A, et al. Daratumumab for the management of newly diagnosed and relapsed/refractory multiple myeloma: current and emerging treatments. Front Oncol. 2021;10:624661. doi: 10.3389/fonc.2020.624661. PubMed DOI PMC

APOLLO (MMY3013) Study. JanssenMD Professional Information Resource. December 18, 2020. Accessed August 31, 2021. https://www.janssenmd.com/darzalex-faspro/clinical-data/clinical-studies/apollo-mmy3013-study

Beksac M, Richardson P, Unal A, Corradini P, DeLimpasi S, Gulbas Z et al 2020 Isatuximab plus pomalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma and soft-tissue plasmacytomas: ICARIA-MM subgroup analysis. American Society of Hematology Annual Meeting 2020. Abstract 2289

Richardson P, Harrison S, Facon T, Yong K, Raje N, Alegre A et al 2020 Isatuximab plus pomalidomide and dexamethasone in relapsed/refractory multiple myeloma patients with 1q21 gain: insights from phase 1 and phase 3 studies. Presented at 25th Annual Congress of European Hematology Association; June 11–14, 2020; Virtual. Accessed March 16, 2022. https://library.ehaweb.org/eha/2020/eha25th/293508

Dimopoulos MA, Leleu X, Moreau P, Richardson PG, Liberati AM, Harrison SJ, et al. Isatuximab plus pomalidomide and dexamethasone in relapsed/refractory multiple myeloma patients with renal impairment: ICARIA-MM subgroup analysis. Leukemia. 2021;35:562–572. doi: 10.1038/s41375-020-0868-z. PubMed DOI PMC

Martin T, Shah N, Richter J, Vesole D, Wong S, Huang C, et al. Phase 1b trial of isatuximab, an anti-CD38 monoclonal antibody, in combination with carfilzomib as treatment of relapsed/refractory multiple myeloma. Cancer. 2021;127:1816–1826. doi: 10.1002/cncr.33448. PubMed DOI PMC

Moreau P, Dimopoulos MA, Mikhael J, Yong K, Capra M, Facon T, et al. Updated progression-free survival (PFS) and depth of response in IKEMA, a randomized phase III trial of isatuximab, carfilzomib and dexamethasone (Isa-Kd) vs Kd in relapsed multiple myeloma (MM). ESMO Virtual Plenary: VP5-2022. Ann Oncol. 2022;33:664–665. doi: 10.1016/j.annonc.2022.04.013. DOI

Chari A, Martinez-Lopez J, Mateos MV, Bladé J, Benboubker L, Oriol A, et al. Daratumumab plus carfilzomib and dexamethasone in patients with relapsed or refractory multiple myeloma. Blood. 2019;134:421–431. doi: 10.1182/blood.2019000722. PubMed DOI PMC

Dimopoulos M, Quach H, Mateos MV, Landgren O, Leleu X, Siegel D, et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): results from a randomised, multicentre, open-label, phase 3 study. Lancet. 2020;396:186–197. doi: 10.1016/S0140-6736(20)30734-0. PubMed DOI

Usmani SZ, Quach H, Mateos MV, Landgren O, Leleu X, Siegel D, et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): updated outcomes from a randomised, multicentre, open-label, phase 3 study. Lancet Oncol. 2022;23:65–76. doi: 10.1016/S1470-2045(21)00579-9. PubMed DOI

Mikhael J, Belhadj-Merzoug K, Hulin C. A phase 2 study of isatuximab monotherapy in patients with multiple myeloma who are refractory to daratumumab. Blood Cancer J. 2021;11:89. doi: 10.1038/s41408-021-00478-4. PubMed DOI PMC

Nijhof IS, Groen RW, Lokhorst HM, van Kessel B, Bloem AC, van Velzen J, et al. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia. 2015;29:2039–2049. doi: 10.1038/leu.2015.123. PubMed DOI

Richardson P, Perrot A, San-Miguel J, Beksac M, Spicka I, Leleu X, et al. Updates from ICARIA-MM, a phase 3 study of isatuximab (Isa) plus pomalidomide and low-dose dexamethasone (Pd) versus Pd in relapsed and refractory multiple myeloma (RRMM) J Clin Oncol. 2021;39(Suppl. 15):8017–8017. doi: 10.1200/JCO.2021.39.15_suppl.8017. DOI

Becnel M, Horowitz S, Thomas S, Iyer S, Patel K, Manasanch E, et al. Descriptive analysis of isatuximab use following prior daratumumab in patients with relapsed/refractory multiple myeloma. Blood. 2020;136(Suppl. 1):20–21. doi: 10.1182/blood-2020-140526. DOI

Franssen LE, Stege CAM, Zweegman S, van de Donk N, Nijhof IS. Resistance mechanisms towards CD38-directed antibody therapy in multiple myeloma. J Clin Med. 2020;9:1195. doi: 10.3390/jcm9041195. PubMed DOI PMC

Saltarella I, Desantis V, Melaccio A, Solimando AG, Lamanuzzi A, Ria R, et al. Mechanisms of resistance to anti-CD38 daratumumab in multiple myeloma. Cells. 2020;9:167. doi: 10.3390/cells9010167. PubMed DOI PMC

Jelinek T, Sevcikova T, Popkova T, Cerna L, Broskevicova L, Brozova L et al (2020) Limited efficacy of daratumumab in multiple myeloma with extramedullary disease. European Haematology Association 2020; Abstract EP1030 PubMed

Richardson P, San Miguel J, Moreau P, Hajek R, Dimopoulos M, Laubach J, et al. Interpreting clinical trial data in multiple myeloma: translating findings to the real-world setting. Blood Cancer J. 2018;8:109. doi: 10.1038/s41408-018-0141-0. PubMed DOI PMC

Tai Y-T, Anderson K. A new era of immune therapy in multiple myeloma. Blood. 2016;128:318–319. doi: 10.1182/blood-2016-06-719856. PubMed DOI

Goldschmidt H, Mai E, Nievergall E, Fenk R, Bertsch U, Tichy D, et al. Addition of isatuximab to lenalidomide, bortezomib and dexamethasone as induction therapy for newly-diagnosed, transplant-eligible multiple myeloma patients: the phase III GMMG-HD7 trial. Blood. 2021;138(Suppl. 1):463. doi: 10.1182/blood-2021-145097. DOI

Plesner T, van de Donk N, Richardson PG. Controversy in the use of CD38 antibody for treatment of myeloma: is high CD38 expression good or bad? Cells. 2020;9:378. doi: 10.3390/cells9020378. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...