Radiotherapy-Associated Long-term Modification of Expression of the Inflammatory Biomarker Genes ARG1, BCL2L1, and MYC
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28443095
PubMed Central
PMC5385838
DOI
10.3389/fimmu.2017.00412
Knihovny.cz E-zdroje
- Klíčová slova
- biomarker, inflammation, radiation, toxicity, transcription,
- Publikační typ
- časopisecké články MeSH
Ionizing radiation (IR) exposure of cells in vitro and in vivo triggers a complex cellular response among which modifications of gene expression have been consistently reported. Nevertheless, little is currently known about the transcriptionally responsive genes which play a role in the inflammation response. In order to improve our understanding of such transcriptional response to radiation in vivo, we simultaneously monitored the expression of 249 genes associated with the inflammation response over the course of the radiotherapy treatment in blood of patients treated for endometrial or head and neck cancer. We have identified genes whose transcriptional expression is either upregulated (ARG1, BCL2L1) or downregulated (MYC) several fold in vivo. These modifications were consistently detected across patients and further confirmed by quantitative real-time polymerase chain reaction (QRT-PCR); they were specifically significant toward the end of the radiotherapy treatment, 5 weeks following the first radiation fraction and more pronounced in endometrial patients (respectively, 2.9, 4.1, and 1.8 times). Importantly, in an attempt to correlate expression levels with normal tissue reaction to IR, we also identified three other genes CD40, OAS2, and CXCR1 whose expression level fluctuations during radiotherapy were more pronounced in patients developing late normal tissue responses to curative radiotherapy after the end of the radiotherapy treatment. Overall, we identified inflammation-associated genes which are promising biomarkers of IR exposure and susceptibility to radiation-induced toxicity.
Biomedical Research Centre University Hospital Hradec Králové Hradec Králové Czechia
Clinic of Oncology and Radiotherapy University Hospital Hradec Králové Hradec Králové Czechia
Zobrazit více v PubMed
Ward JF. The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol (1994) 66:427–32.10.1080/09553009414551401 PubMed DOI
Jackson S, Bartek J. The DNA-damage response in human biology and disease. Nature (2009) 461:1071–8.10.1038/nature08467 PubMed DOI PMC
Amundson S, Bittner M, Chen Y, Trent J, Meltzer P, Fornace A. Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene (1999) 18:3666–72.10.1038/sj.onc.1202676 PubMed DOI
Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H, et al. ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene (2001) 21:7488–96.10.1038/sj.onc.1205896 PubMed DOI
Kabacik S, Mackay A, Tamber N, Manning G, Finnon P, Paillier F, et al. Gene expression following ionising radiation: identification of biomarkers for dose estimation and prediction of individual response. Int J Radiat Biol (2011) 87(2):115–29.10.3109/09553002.2010.519424 PubMed DOI
Kabacik S, Ortega-Molina A, Efeyan A, Finnon P, Bouffler S, Serrano M, et al. A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity. Cell Cycle (2011) 10(7):1152–61.10.4161/cc.10.7.15231 PubMed DOI PMC
Manning G, Kabacik S, Finnon P, Bouffler S, Badie C. High and low dose responses of transcriptional biomarkers in ex vivo x-irradiated human blood. Int J Radiat Biol (2013) 89(7):512–22.10.3109/09553002.2013.769694 PubMed DOI
Badie C, Kabacik S, Balagurunathan Y, Bernard N, Brengues M, Faggioni G, et al. Laboratory intercomparison of gene expression assays. Radiat Res (2013) 180(2):138–48.10.1667/RR3236.1 PubMed DOI PMC
Abend M, Badie C, Quintens R, Kriehuber R, Manning G, Macaeva E, et al. Examining radiation-induced in vivo and in vitro gene expression changes of the peripheral blood in different laboratories for biodosimetry purposes: first RENEB gene expression study. Radiat Res (2016) 185(2):109–23.10.1667/RR14221.1 PubMed DOI
Manning G, Macaeva E, Majewski M, Kriehuber R, Brzóska K, Abend M, et al. Comparable dose estimates of blinded whole blood samples are obtained independently of culture conditions and analytical approaches. Second RENEB gene expression study. Int J Radiat Biol (2016) 93(1):87–98.10.1080/09553002.2016.1227105 PubMed DOI
Grace M, McLeland C, Blakely W. Real-time quantitative RT-PCR assay of GADD45 gene expression changes as a biomarker for radiation biodosimetry. Int J Radiat Biol (2002) 78(11):1011–21.10.1080/09553000210158056 PubMed DOI
Amundson S, Fornace A. Monitoring human radiation exposure by gene expression profiling: possibilities and pitfalls. Health Phys (2003) 85(1):36–42.10.1097/00004032-200307000-00009 PubMed DOI
Stassen T, Port M, Nuyken I, Abend M. Radiation-induced gene expression in MCF-7 cells. Int J Radiat Biol (2003) 79(5):319–31.10.1080/0955300032000093146 PubMed DOI
Amundson S, Lee R, Koch-Paiz C, Bittner M, Meltzer P, Trent J, et al. Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res (2003) 1(6):445–52. PubMed
Ghandhi S, Smilenov L, Elliston C, Chowdhury M, Amundson S. Radiation dose-rate effects on gene expression for human biodosimetry. BMC Med Genomics (2015) 8:22.10.1186/s12920-015-0097-x PubMed DOI PMC
Woloschak G, Chang-Liu C. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or gamma-rays. Cancer Lett (1995) 97(2):169–75.10.1016/0304-3835(95)03973-Z PubMed DOI
Franco N, Lamartine J, Frouin V, Le Minter P, Petat C, Leplat J, et al. Low-dose exposure to gamma rays induces specific gene regulations in normal human keratinocytes. Radiat Res (2005) 163(6):623–35.10.1667/RR3391 PubMed DOI
Kabacik S, Manning G, Raffy C, Bouffler S, Badie C. Time, dose and ataxia telangiectasia mutated (ATM) status dependency of coding and noncoding RNA expression after ionizing radiation exposure. Radiat Res (2015) 183:325–37.10.1667/RR13876.1 PubMed DOI
El-Saghire H, Thierens H, Monsieurs P, Michaux A, Vandevoorde C, Baatout S. Gene set enrichment analysis highlights different gene expression profiles in whole blood samples X-irradiated with low and high doses. Int J Radiat Biol (2013) 89:628–38.10.3109/09553002.2013.782448 PubMed DOI
Hallahan D, Spriggs D, Beckett M, Kufe D, Weichselbaum R. Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci U S A (1989) 86:10104–7.10.1073/pnas.86.24.10104 PubMed DOI PMC
Bevelaequa M, Stengelin S, Gimbrone M, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science (1989) 243:1160–5.10.1126/science.2466335 PubMed DOI
Di Maggio F, Minafra L, Forte G, Cammarata F, Lio D, Messa C, et al. Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (2015) 12:14.10.1186/s12950-015-0058-3 PubMed DOI PMC
Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets (2010) 14:45–55.10.1517/14728220903431069 PubMed DOI PMC
El-Saghire H, Michaux A, Thierens H, Baatout S. Low doses of ionizing radiation induce immune-stimulatory responses in isolated human primary monocytes. Int J Mol Med (2013) 32(6):1407–14.10.3892/ijmm.2013.1514 PubMed DOI
Paul S, Smilenov L, Amundson S. Widespread decreased expression of immune function genes in human peripheral blood following radiation exposure. Radiat Res (2013) 180(6):575–83.10.1667/RR13343.1 PubMed DOI PMC
Prise K, O’Sullivan J. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer (2009) 9(5):351–60.10.1038/nrc2603 PubMed DOI PMC
Lowe J, Menendez D, Bushel P, Shatz M, Kirk E, Troester M, et al. p53 and NF-κB coregulate proinflammatory gene responses in human macrophages. Cancer Res (2014) 74(8):2182–92.10.1158/0008-5472.CAN-13-1070 PubMed DOI PMC
Manning G, Kabacik S, Finnon P, Paillier F, Bouffler S, Badie C. Assessing a new gene expression analysis technique for radiation biodosimetry applications. Radiat Meas (2011) 46:1014–8.10.1016/j.radmeas.2011.05.019 DOI
Cox J, Stetz J, Pajak T. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys (1995) 31(5):1341–6.10.1016/0360-3016(95)00060-C PubMed DOI
Geiss G, Bumgarner R, Birditt B, Dahl T, Dowidar N, Dunaway D, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol (2008) 26(3):317–25.10.1038/nbt1385 PubMed DOI
Bustin S, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem (2009) 55(4):611–22.10.1373/clinchem.2008.112797 PubMed DOI
Bentzen S. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer (2006) 6:702–13.10.1038/nrc1950 PubMed DOI
Zhao W, Diz D, Robbins M. Oxidative damage pathways in relation to normal tissue injury. Br J Radiol (2007) 80(Spec No. 1):S23–31.10.1259/bjr/18237646 PubMed DOI
Sprung C, Forrester H, Siva S, Martin O. Immunological markers that predict radiation toxicity. Cancer Lett (2015) 368(2):191–7.10.1016/j.canlet.2015.01.045 PubMed DOI
Fält S, Holmberg K, Lambert B, Wennborg A. Long-term global gene expression patterns in irradiated human lymphocytes. Carcinogenesis (2003) 24(11):1837–45.10.1093/carcin/bgg134 PubMed DOI
Jung K, Sabri S, Hanson J, Xu Y, Wang YW, Lai R, et al. Elevated ARG1 expression in primary monocytes-derived macrophages as a predictor of radiation-induced acute skin toxicities in early breast cancer patients. Cancer Biol Ther (2015) 16(9):1281–8.10.1080/15384047.2015.1056945 PubMed DOI PMC
Hsiao C, Wang D, Kaushal A, Saligan L. Mitochondria-related gene expression changes are associated with fatigue in patients with nonmetastatic prostate cancer receiving external beam radiation therapy. Cancer Nurs (2013) 36(3):189–97.10.1097/NCC.0b013e318263f514 PubMed DOI PMC
Wilson G, Saunders M, Dische S, Richman P, Daley F, Bentzen S. Bcl-2 expression in head and neck cancer: an enigmatic prognostic marker. Int J Radiat Oncol Biol Phys (2001) 49(2):435–41.10.1016/S0360-3016(00)01498-X PubMed DOI
Nix P, Cawkwell L, Patmore H, Greenman J, Stafford N. Bcl-2 expression predicts radiotherapy failure in laryngeal cancer. Br J Cancer (2005) 92(12):2185–9.10.1038/sj.bjc.6602647 PubMed DOI PMC
Fraga-Guedes C, André S, Mastropasqua M, Botteri E, Toesca A, Rocha R, et al. Angiosarcoma and atypical vascular lesions of the breast: diagnostic and prognostic role of MYC gene amplification and protein expression. Breast Cancer Res Treat (2015) 151(1):131–40.10.1007/s10549-015-3379-2 PubMed DOI
Guo T, Zhang L, Chang NE, Singer S, Maki RG, Antonescu CR. Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but not in other radiation-associated atypical vascular lesions. Genes Chromosomes Cancer (2011) 50(1):25–33.10.1002/gcc.20827 PubMed DOI PMC
Cenci T, Martini M, Montano N, D’Alessandris Q, Falchetti M, Annibali D, et al. Prognostic relevance of c-Myc and BMI1 expression in patients with glioblastoma. Am J Clin Pathol (2012) 138:390–6.10.1309/AJCPRXHNJQLO09QA PubMed DOI
Gruel G, Voisin P, Vaurijoux A, Roch-Lefevre S, Grégoire E, Maltere P, et al. Broad modulation of gene expression in CD4+ lymphocyte subpopulations in response to low doses of ionizing radiation. Radiat Res (2008) 170(3):335–44.10.1667/RR1147.1 PubMed DOI
West C, Barnett G. Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med (2011) 3(8):52.10.1186/gm268 PubMed DOI PMC
Badie C, Iliakis G, Foray N, Alsbeih G, Pantellias GE, Okayasu R, et al. Defective repair of DNA double-strand breaks and chromosome damage in fibroblasts from a radiosensitive leukemia patient. Cancer Res (1995) 55(6):1232–4. PubMed
Badie C, Goodhardt M, Waugh A, Doyen N, Foray N, Calsou P, et al. A DNA double-strand break defective fibroblast cell line (180BR) derived from a radiosensitive patient represents a new mutant phenotype. Cancer Res (1997) 57(20):4600–7. PubMed
Correa C, Cheung V. Genetic variation in radiation-induced expression phenotypes. Am J Hum Genet (2004) 75(5):885–90.10.1086/425221 PubMed DOI PMC
Fry R, Svensson J, Valiathan C, Wang E, Hogan BJ, Bhattacharya S, et al. Genomic predictors of interindividual differences in response to DNA damaging agents. Genes Dev (2008) 22(19):2621–6.10.1101/gad.1688508 PubMed DOI PMC
Carter S, Eklund A, Kohane I, Harris L, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet (2006) 38(9):1043–8.10.1038/ng1861 PubMed DOI
Badie C, Dziwura S, Raffy C, Tsigani T, Alsbeih G, Moody J, et al. Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment. Br J Cancer (2008) 98(11):1845–51.10.1038/sj.bjc.6604381 PubMed DOI PMC
Rieger K, Hong W, Tusher V, Tang J, Tibshirani R, Chu G. Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proc Natl Acad Sci U S A (2004) 101(17):6635–40.10.1073/pnas.0307761101 PubMed DOI PMC
Svensson J, Stalpers L, Esveldt-van Lange R, Franken N, Haveman J, Klein B, et al. Analysis of gene expression using gene sets discriminates cancer patients with and without late radiation toxicity. PLoS Med (2006) 3(10):e422.10.1371/journal.pmed.0030422 PubMed DOI PMC
Adawi A, Zhang Y, Baggs R, Rubin P, Williams J, Finkelstein J, et al. Blockade of CD40-CD40 ligand interactions protects against radiation-induced pulmonary inflammation and fibrosis. Clin Immunol Immunopathol (1998) 89(3):222–30.10.1006/clin.1998.4606 PubMed DOI
Gu X, Boldrup L, Coates P, Fahraeus R, Nylander E, Loizou C, et al. Epigenetic regulation of OAS2 shows disease-specific DNA methylation profiles at individual CpG sites. Sci Rep (2016) 6:32579.10.1038/srep32579 PubMed DOI PMC
Zhou Y, Kang M, Jha B, Silverman R, Lee C, Elias J. Role of ribonuclease L in viral pathogen-associated molecular pattern/influenza virus and cigarette smoke-induced inflammation and remodelling. J Immunol (2013) 191:2637–46.10.4049/jimmunol.1300082 PubMed DOI PMC
Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, et al. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci U S A (2004) 101(32):11791–6.10.1073/pnas.0402090101 PubMed DOI PMC
Lopes A, Brandolini L, Aramini A, Bianchini G, Silva R, Zaperlon A, et al. DF2755A, a novel non-competitive allosteric inhibitor of CXCR1/2, reduces inflammatory and post-operative pain. Pharmacol Res (2016) 103:69–79.10.1016/j.phrs.2015.11.005 PubMed DOI
Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell (2011) 144(5):646–74.10.1016/j.cell.2011.02.013 PubMed DOI
Transcriptional Inflammatory Signature in Healthy Donors and Different Radiotherapy Cancer Patients
In Vivo Validation of Alternative FDXR Transcripts in Human Blood in Response to Ionizing Radiation