In Vivo Validation of Alternative FDXR Transcripts in Human Blood in Response to Ionizing Radiation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
HPRU-CRTH-01
NIHR Newcastle Biomedical Research Centre
PubMed
33113898
PubMed Central
PMC7660203
DOI
10.3390/ijms21217851
PII: ijms21217851
Knihovny.cz E-zdroje
- Klíčová slova
- FDXR, alternative transcript, biodosimetry, gene expression, ionizing radiation, nanopore sequencing, qPCR, splice variants,
- MeSH
- alternativní sestřih MeSH
- dospělí MeSH
- ionizující záření MeSH
- krev účinky záření MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory genetika radioterapie MeSH
- oxidoreduktasy genetika MeSH
- poškození DNA MeSH
- regulace genové exprese MeSH
- upregulace * MeSH
- vztah dávky záření a odpovědi MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxidoreduktasy MeSH
Following cell stress such as ionising radiation (IR) exposure, multiple cellular pathways are activated. We recently demonstrated that ferredoxin reductase (FDXR) has a remarkable IR-induced transcriptional responsiveness in blood. Here, we provided a first comprehensive FDXR variant profile following DNA damage. First, specific quantitative real-time polymerase chain reaction (qPCR) primers were designed to establish dose-responses for eight curated FDXR variants, all up-regulated after IR in a dose-dependent manner. The potential role of gender on the expression of these variants was tested, and neither the variants response to IR nor the background level of expression was profoundly affected; moreover, in vitro induction of inflammation temporarily counteracted IR response early after exposure. Importantly, transcriptional up-regulation of these variants was further confirmed in vivo in blood of radiotherapy patients. Full-length nanopore sequencing was performed to identify other FDXR variants and revealed the high responsiveness of FDXR-201 and FDXR-208. Moreover, FDXR-218 and FDXR-219 showed no detectable endogenous expression, but a clear detection after IR. Overall, we characterised 14 FDXR transcript variants and identified for the first time their response to DNA damage in vivo. Future studies are required to unravel the function of these splicing variants, but they already represent a new class of radiation exposure biomarkers.
Biomedical Research Centre Hradec Králové University Hospital 500 01 Hradec Králové Czech Republic
Institute of Hematology and Blood Transfusion 128 00 Praha 2 Czech Republic
Oxford Nanopore Technologies Gosling Building Edmund Halley Way Oxford OX4 4DQ UK
Zobrazit více v PubMed
Wang Y., Liu J., Huang B.O., Xu Y.M., Li J., Huang L.F., Lin J., Zhang J., Min Q.H., Yang W.M., et al. Mechanism of alternative splicing and its regulation. Biomed. Rep. 2015;3:152–158. doi: 10.3892/br.2014.407. PubMed DOI PMC
Wang B.D., Lee N.H. Aberrant RNA Splicing in Cancer and Drug Resistance. Cancers. 2018;10:458. doi: 10.3390/cancers10110458. PubMed DOI PMC
Shabalina S.A., Ogurtsov A.Y., Spiridonov N.A., Koonin E.V. Evolution at protein ends: Major contribution of alternative transcription initiation and termination to the transcriptome and proteome diversity in mammals. Nucleic Acids Res. 2014;42:7132–7144. doi: 10.1093/nar/gku342. PubMed DOI PMC
Sprung C.N., Li J., Hovan D., McKay M.J., Forrester H.B. Alternative Transcript Initiation and Splicing as a Response to DNA Damage. PLoS ONE. 2011;6:e25758. doi: 10.1371/journal.pone.0025758. PubMed DOI PMC
Barak Y., Gottlieb E., Juven-Gershon T., Oren M. Regulation of mdm2 expression by p53: Alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 1994;8:1739–1749. doi: 10.1101/gad.8.15.1739. PubMed DOI
Rossi M., Demidov O.N., Anderson C.W., Appella E., Mazur S.J. Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites. Nucleic Acids Res. 2008;36:7168–7180. doi: 10.1093/nar/gkn888. PubMed DOI PMC
Forrester H.B., Li J., Hovan D., Ivashkevich A.N., Sprung C.N. DNA Repair Genes: Alternative Transcription and Gene Expression at the Exon Level in Response to the DNA Damaging Agent, Ionizing Radiation. PLoS ONE. 2012;7:e53358. doi: 10.1371/journal.pone.0053358. PubMed DOI PMC
O’Brien G., Cruz-Garcia L., Majewski M., Grepl J., Abend M., Port M., Tichý A., Sirak I., Malkova A., Donovan E., et al. FDXR is a biomarker of radiation exposure in vivo. Sci. Rep. 2018;8:684. doi: 10.1038/s41598-017-19043-w. PubMed DOI PMC
Cruz-Garcia L., O’Brien G., Donovan E., Gothard L., Boyle S., Laval A., Testard I., Ponge L., Wozniak G., Miszczyk L., et al. Influence of Confounding Factors on Radiation Dose Estimation Using In Vivo Validated Transcriptional Biomarkers. Health Phys. 2018;115:90–101. doi: 10.1097/HP.0000000000000844. PubMed DOI PMC
Tichy A., Kabacik S., O’Brien G., Pejchal J., Sinkorova Z., Kmochova A., Sirak I., Malkova A., Beltran C.G., Gonzalez J.R., et al. The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood. PLoS ONE. 2018;13:e0193412. doi: 10.1371/journal.pone.0193412. PubMed DOI PMC
Manning G., Macaeva E., Majewski M., Kriehuber R., Brzóska K., Abend M., Doucha-Senf S., Oskamp D., Strunz S., Quintens R., et al. Comparable dose estimates of blinded whole blood samples are obtained independently of culture conditions and analytical approaches. Second RENEB gene expression study. Int. J. Radiat. Biol. 2017;93:87–98. doi: 10.1080/09553002.2016.1227105. PubMed DOI
Manning G., Kabacik S., Finnon P., Bouffler S., Badie C. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int. J. Radiat. Biol. 2013;89:512–522. doi: 10.3109/09553002.2013.769694. PubMed DOI
Kabacik S., Mackay A., Tamber N., Manning G., Finnon P., Paillier F., Ashworth A., Bouffler S., Badie C. Gene expression following ionising radiation: Identification of biomarkers for dose estimation and prediction of individual response. Int. J. Radiat. Biol. 2011;87:115–129. doi: 10.3109/09553002.2010.519424. PubMed DOI
Port M., Ostheim P., Majewski M., Voss T., Haupt J., Lamkowski A., Abend M. Rapid High-Throughput Diagnostic Triage after a Mass Radiation Exposure Event Using Early Gene Expression Changes. Radiat. Res. 2019 doi: 10.1667/RR15360.1. PubMed DOI
Ghandhi S.A., Smilenov L.B., Elliston C.D., Chowdhury M., Amundson S.A. Radiation dose-rate effects on gene expression for human biodosimetry. BMC Med. Genom. 2015;8:22. doi: 10.1186/s12920-015-0097-x. PubMed DOI PMC
Paul S., Amundson S.A. Development of gene expression signatures for practical radiation biodosimetry. Int. J. Radiat. Oncol. Biol. Phys. 2008;71:1236–1244. doi: 10.1016/j.ijrobp.2008.03.043. PubMed DOI PMC
Paul A., Drecourt A., Petit F., Deguine D.D., Vasnier C., Oufadem M., Masson C., Bonnet C., Masmoudi S., Mosnier I., et al. FDXR Mutations Cause Sensorial Neuropathies and Expand the Spectrum of Mitochondrial Fe-S-Synthesis Diseases. Am. J. Hum. Genet. 2017;101:630–637. doi: 10.1016/j.ajhg.2017.09.007. PubMed DOI PMC
Macaeva E., Saeys Y., Tabury K., Janssen A., Michaux A., Benotmane M.A., De Vos W.H., Baatout S., Quintens R. Radiation-induced alternative transcription and splicing events and their applicability to practical biodosimetry. Sci. Rep. 2016;6:19251. doi: 10.1038/srep19251. PubMed DOI PMC
Budworth H., Snijders A.M., Marchetti F., Mannion B., Bhatnagar S., Kwoh E., Tan Y., Wang S.X., Blakely W.F., Coleman M., et al. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood. PLoS ONE. 2012;7:e48619. doi: 10.1371/journal.pone.0048619. PubMed DOI PMC
Soltani B., Ghaemi N., Sadeghizadeh M., Najafi F. Redox maintenance and concerted modulation of gene expression and signaling pathways by a nanoformulation of curcumin protects peripheral blood mononuclear cells against gamma radiation. Chem. Biol. Interact. 2016;257:81–93. doi: 10.1016/j.cbi.2016.07.021. PubMed DOI
Odkhuu E., Mendjargal A., Koide N., Naiki Y., Komatsu T., Yokochi T. Lipopolysaccharide downregulates the expression of p53 through activation of MDM2 and enhances activation of nuclear factor-kappa B. Immunobiology. 2015;220:136–141. doi: 10.1016/j.imbio.2014.08.010. PubMed DOI
Lu H., Giordano F., Ning Z. Oxford Nanopore MinION Sequencing and Genome Assembly. Genom. Proteom. Bioinform. 2016;14:265–279. doi: 10.1016/j.gpb.2016.05.004. PubMed DOI PMC
Clarke J., Wu H.-C., Jayasinghe L., Patel A., Reid S., Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 2009;4:265. doi: 10.1038/nnano.2009.12. PubMed DOI
Jain M., Koren S., Miga K.H., Quick J., Rand A.C., Sasani T.A., Tyson J.R., Beggs A.D., Dilthey A.T., Fiddes I.T., et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 2018;36:338. doi: 10.1038/nbt.4060. PubMed DOI PMC
Rhoads A., Au K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015;13:278–289. doi: 10.1016/j.gpb.2015.08.002. PubMed DOI PMC
Mantere T., Kersten S., Hoischen A. Long-Read Sequencing Emerging in Medical Genetics. Front. Genet. 2019;10:426. doi: 10.3389/fgene.2019.00426. PubMed DOI PMC
Weirather J.L., de Cesare M., Wang Y., Piazza P., Sebastiano V., Wang X.J., Buck D., Au K.F. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research. 2017;6:100. doi: 10.12688/f1000research.10571.2. PubMed DOI PMC
Cruz-Garcia L., O’Brien G., Sipos B., Mayes S., Love M.I., Turner D.J., Badie C. Generation of a Transcriptional Radiation Exposure Signature in Human Blood Using Long-Read Nanopore Sequencing. Radiat. Res. 2020;193:143–154. doi: 10.1667/RR15476.1. PubMed DOI PMC
Rieger K.E., Chu G. Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res. 2004;32:4786–4803. doi: 10.1093/nar/gkh783. PubMed DOI PMC
Kis E., Szatmári T., Keszei M., Farkas R., Ésik O., Lumniczky K., Falus A., Sáfrány G. Microarray analysis of radiation response genes in primary human fibroblasts. Int. J. Radiat. Oncol. Biol. Phys. 2006;66:1506–1514. doi: 10.1016/j.ijrobp.2006.08.004. PubMed DOI
Abend M., Badie C., Quintens R., Kriehuber R., Manning G., Macaeva E., Njima M., Oskamp D., Strunz S., Moertl S., et al. Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study. Radiat. Res. 2016;185:109–123. doi: 10.1667/RR14221.1. PubMed DOI
Kelemen O., Convertini P., Zhang Z., Wen Y., Shen M., Falaleeva M., Stamm S. Function of alternative splicing. Gene. 2013;514:1–30. doi: 10.1016/j.gene.2012.07.083. PubMed DOI PMC
Rinn J.L., Snyder M. Sexual dimorphism in mammalian gene expression. Trends Genet. 2005;21:298–305. doi: 10.1016/j.tig.2005.03.005. PubMed DOI
Trabzuni D., Ramasamy A., Imran S., Walker R., Smith C., Weale M.E., Hardy J., Ryten M. Widespread sex differences in gene expression and splicing in the adult human brain. Nat. Commun. 2013;4:2771. doi: 10.1038/ncomms3771. PubMed DOI PMC
Karlebach G., Veiga D.F.T., Mays A.D., Kesarwani A.K., Danis D., Kararigas G., Zhang X.A., George J., Ananda G., Steinhaus R., et al. The impact of sex on alternative splicing. BioRxiv. 2018 doi: 10.1101/490904. DOI
Liu A., Zhang H., Qin F., Wang Q., Sun Q., Xie S., Wang Q., Tang Z., Lu Z. Sex Associated Differential Expressions of the Alternatively Spliced Variants mRNA of OPRM1 in Brain Regions of C57BL/6 Mouse. Cell. Physiol. Biochem. 2018;50:1441–1459. doi: 10.1159/000494644. PubMed DOI
Matlin A.J., Clark F., Smith C.W. Understanding alternative splicing: Towards a cellular code. Nat. Rev. Mol. Cell Biol. 2005;6:386–398. doi: 10.1038/nrm1645. PubMed DOI
McGlincy N.J., Smith C.W. Alternative splicing resulting in nonsense-mediated mRNA decay: What is the meaning of nonsense? Trends Biochem. Sci. 2008;33:385–393. doi: 10.1016/j.tibs.2008.06.001. PubMed DOI
Dhamija S., Menon M.B. Non-coding transcript variants of protein-coding genes—What are they good for? RNA Biol. 2018;15:1025–1031. doi: 10.1080/15476286.2018.1511675. PubMed DOI PMC
Cirulli E.T., Heinzen E.L., Dietrich F.S., Shianna K.V., Singh A., Maia J.M., Goedert J.J., Goldstein D.B. A whole-genome analysis of premature termination codons. Genomics. 2011;98:337–342. doi: 10.1016/j.ygeno.2011.07.001. PubMed DOI PMC
Maquat L.E. When cells stop making sense: Effects of nonsense codons on RNA metabolism in vertebrate cells. RNA. 1995;1:453–465. PubMed PMC
Salmena L., Poliseno L., Tay Y., Kats L., Pandolfi P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–358. doi: 10.1016/j.cell.2011.07.014. PubMed DOI PMC
Ezkurdia I., Rodriguez J.M., Carrillo-de Santa Pau E., Vázquez J., Valencia A., Tress M.L. Most highly expressed protein-coding genes have a single dominant isoform. J. Proteome Res. 2015;14:1880–1887. doi: 10.1021/pr501286b. PubMed DOI PMC
Consortium T.U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Consortium F., Clst R.P., Forrest A.R., Kawaji H., Rehli M., Baillie J.K., de Hoon M.J., Haberle V., Lassmann T. A promoter-level mammalian expression atlas. Nature. 2014;507:462–470. doi: 10.1038/nature13182. PubMed DOI PMC
Kimura K., Wakamatsu A., Suzuki Y., Ota T., Nishikawa T., Yamashita R., Yamamoto J., Sekine M., Tsuritani K., Wakaguri H., et al. Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes. Genome Res. 2006;16:55–65. doi: 10.1101/gr.4039406. PubMed DOI PMC
Davuluri R.V., Suzuki Y., Sugano S., Plass C., Huang T.H. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 2008;24:167–177. doi: 10.1016/j.tig.2008.01.008. PubMed DOI
Arce L., Yokoyama N.N., Waterman M.L. Diversity of LEF/TCF action in development and disease. Oncogene. 2006;25:7492–7504. doi: 10.1038/sj.onc.1210056. PubMed DOI
Xu C., Park J.-K., Zhang J. Evidence that alternative transcriptional initiation is largely nonadaptive. PLoS Biol. 2019;17:e3000197. doi: 10.1371/journal.pbio.3000197. PubMed DOI PMC
Christmann M., Kaina B. Transcriptional regulation of human DNA repair genes following genotoxic stress: Trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res. 2013;41:8403–8420. doi: 10.1093/nar/gkt635. PubMed DOI PMC
Liu G., Chen X. The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene. 2002;21:7195–7204. doi: 10.1038/sj.onc.1205862. PubMed DOI
Terwilliger T., Abdul-Hay M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017;7:e577. doi: 10.1038/bcj.2017.53. PubMed DOI PMC
Chiaretti S., Li X., Gentleman R., Vitale A., Vignetti M., Mandelli F., Ritz J., Foa R. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. J. Blood. 2004;103:2771–2778. doi: 10.1182/blood-2003-09-3243. PubMed DOI
Wong A.C.H., Rasko J.E.J., Wong J.J. We skip to work: Alternative splicing in normal and malignant myelopoiesis. Leukemia. 2018;32:1081–1093. doi: 10.1038/s41375-018-0021-4. PubMed DOI
Manning G., Tichý A., Sirák I., Badie C. Radiotherapy-Associated Long-term Modification of Expression of the Inflammatory Biomarker Genes ARG1, BCL2L1, and MYC. Front. Immunol. 2017;8:412. doi: 10.3389/fimmu.2017.00412. PubMed DOI PMC
Lammering G., Valerie K., Lin P.S., Hewit T.H., Schmidt-Ullrich R.K. Radiation-induced activation of a common variant of EGFR confers enhanced radioresistance. J. Eur. Soc. Ther. Radiol. Oncol. 2004;72:267–273. doi: 10.1016/j.radonc.2004.07.004. PubMed DOI
Sheng J., Zhao Q., Zhao J., Zhang W., Sun Y., Qin P., Lv Y., Bai L., Yang Q., Chen L., et al. SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance. EBioMedicine. 2018;38:113–126. doi: 10.1016/j.ebiom.2018.11.007. PubMed DOI PMC
Abbaszadeh F., Clingen P.H., Arlett C.F., Plowman P.N., Bourton E.C., Themis M., Makarov E.M., Newbold R.F., Green M.H.L., Parris C.N. A novel splice variant of the DNA-PKcs gene is associated with clinical and cellular radiosensitivity in a patient with xeroderma pigmentosum. J. Med. Genet. 2010;47:176. doi: 10.1136/jmg.2009.068866. PubMed DOI
West S., Kumar S., Batra S.K., Ali H., Ghersi D. Uncovering and characterizing splice variants associated with survival in lung cancer patients. PLoS Comput. Biol. 2019;15:e1007469. doi: 10.1371/journal.pcbi.1007469. PubMed DOI PMC
Vitting-Seerup K., Sandelin A. The Landscape of Isoform Switches in Human Cancers. Mol. Cancer Res. 2017;15:1206. doi: 10.1158/1541-7786.MCR-16-0459. PubMed DOI
Badie C., Iliakis G., Foray N., Alsbeih G., Cedervall B., Chavaudra N., Pantelias G., Arlett C., Malaise E.P. Induction and Rejoining of DNA Double-Strand Breaks and Interphase Chromosome Breaks after Exposure to X Rays in One Normal and Two Hypersensitive Human Fibroblast Cell Lines. Radiat. Res. 1995;144:26–35. doi: 10.2307/3579232. PubMed DOI
Badie C., Iliakis G., Foray N., Alsbeih G., Pantellias G.E., Okayasu R., Cheong N., Russell N.S., Begg A.C., Arlett C.F., et al. Defective repair of DNA double-strand breaks and chromosome damage in fibroblasts from a radiosensitive leukemia patient. Cancer Res. 1995;55:1232–1234. PubMed
Love M.I., Soneson C., Patro R. Swimming downstream: Statistical analysis of differential transcript usage following Salmon quantification. F1000Research. 2018;7:952. doi: 10.12688/f1000research.15398.1. PubMed DOI PMC
Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Patro R., Duggal G., Love M.I., Irizarry R.A., Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417. doi: 10.1038/nmeth.4197. PubMed DOI PMC