Transcriptional Inflammatory Signature in Healthy Donors and Different Radiotherapy Cancer Patients

. 2024 Jan 16 ; 25 (2) : . [epub] 20240116

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38256152

Grantová podpora
NIHR HPRU Chemical and Radiation Threats and Hazards at Newcastle University in partnership with UK Health Security Agency NIHR Newcastle Biomedical Research Centre
02/070/BK_23/0043 Silesian University, Poland

Cancer and ionizing radiation exposure are associated with inflammation. To identify a set of radiation-specific signatures of inflammation-associated genes in the blood of partially exposed radiotherapy patients, differential expression of 249 inflammatory genes was analyzed in blood samples from cancer patients and healthy individuals. The gene expression analysis on a cohort of 63 cancer patients (endometrial, head and neck, and prostate cancer) before and during radiotherapy (24 h, 48 h, ~1 week, ~4-8 weeks, and 1 month after the last fraction) identified 31 genes and 15 up- and 16 down-regulated genes. Transcription variability under normal conditions was determined using blood drawn on three separate occasions from four healthy donors. No difference in inflammatory expression between healthy donors and cancer patients could be detected prior to radiotherapy. Remarkably, repeated sampling of healthy donors revealed an individual endogenous inflammatory signature. Next, the potential confounding effect of concomitant inflammation was studied in the blood of seven healthy donors taken before and 24 h after a flu vaccine or ex vivo LPS (lipopolysaccharide) treatment; flu vaccination was not detected at the transcriptional level and LPS did not have any effect on the radiation-induced signature identified. Finally, we identified a radiation-specific signature of 31 genes in the blood of radiotherapy patients that were common for all cancers, regardless of the immune status of patients. Confirmation via MQRT-PCR was obtained for BCL6, MYD88, MYC, IL7, CCR4 and CCR7. This study offers the foundation for future research on biomarkers of radiation exposure, radiation sensitivity, and radiation toxicity for personalized radiotherapy treatment.

Zobrazit více v PubMed

Kabacik S., Mackay A., Tamber N., Manning G., Finnon P., Paillier F., Ashworth A., Bouffler S., Badie C. Gene expression following ionising radiation: Identification of biomarkers for dose estimation and prediction of individual response. Int. J. Radiat. Biol. 2011;87:115–129. doi: 10.3109/09553002.2010.519424. PubMed DOI

Manning G., Kabacik S., Finnon P., Bouffler S., Badie C. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int. J. Radiat. Biol. 2013;89:512–522. doi: 10.3109/09553002.2013.769694. PubMed DOI

Schmitt M., Greten F.R. The inflammatory pathogenesis of colorectal cancer. Nat. Rev. Immunol. 2021;21:653–667. doi: 10.1038/s41577-021-00534-x. PubMed DOI

Constanzo J., Faget J., Ursino C., Badie C., Pouget J.P. Radiation-Induced Immunity and Toxicities: The Versatility of the cGAS-STING Pathway. Front. Immunol. 2021;12:680503. doi: 10.3389/fimmu.2021.680503. PubMed DOI PMC

El-Saghire H., Thierens H., Monsieurs P., Michaux A., Vandevoorde C., Baatout S. Gene set enrichment analysis highlights different gene expression profiles in whole blood samples X-irradiated with low and high doses. Int. J. Radiat. Biol. 2013;89:628–638. doi: 10.3109/09553002.2013.782448. PubMed DOI

Paul S., Smilenov L.B., Amundson S.A. Widespread decreased expression of immune function genes in human peripheral blood following radiation exposure. Radiat. Res. 2013;180:575–583. doi: 10.1667/RR13343.1. PubMed DOI PMC

Cruz-Garcia L., Badie C., Anbalagan S., Moquet J., Gothard L., O’Brien G., Somaiah N., Ainsbury E.A. An ionising radiation-induced specific transcriptional signature of inflammation-associated genes in whole blood from radiotherapy patients: A pilot study. Radiat. Oncol. 2021;16:83. doi: 10.1186/s13014-021-01807-4. PubMed DOI PMC

Balázs K., Kis E., Badie C., Bogdándi E.N., Candéias S., Cruz Garcia L., Dominczyk I., Frey B., Gaipl U., Jurányi Z., et al. Radiotherapy-Induced Changes in the Systemic Immune and Inflammation Parameters of Head and Neck Cancer Patients. Cancers. 2019;11:1324. doi: 10.3390/cancers11091324. PubMed DOI PMC

Manning G., Tichý A., Sirák I., Badie C. Radiotherapy-Associated Long-term Modification of Expression of the Inflammatory Biomarker Genes ARG1, BCL2L1, and MYC. Front. Immunol. 2017;8:412. doi: 10.3389/fimmu.2017.00412. PubMed DOI PMC

Jardin F., Ruminy P., Bastard C., Tilly H. The BCL6 proto-oncogene: A leading role during germinal center development and lymphomagenesis. Pathol. Biol. 2007;55:73–83. doi: 10.1016/j.patbio.2006.04.001. PubMed DOI

Huang C., Hatzi K., Melnick A. Lineage-specific functions of Bcl-6 in immunity and inflammation are mediated by distinct biochemical mechanisms. Nat. Immunol. 2013;14:380–388. doi: 10.1038/ni.2543. PubMed DOI PMC

Li Y., Wang Z., Lin H., Wang L., Chen X., Liu Q., Zuo Q., Hu J., Wang H., Guo J., et al. Bcl6 Preserves the Suppressive Function of Regulatory T Cells During Tumorigenesis. Front. Immunol. 2020;11:806. doi: 10.3389/fimmu.2020.00806. PubMed DOI PMC

Barman I.S.M. MyD88 and Cancer. Explor. Res. Hypothesis Med. 2016;1:29–33.

Brackett C.M., Greene K.F., Aldrich A.R., Trageser N.H., Pal S., Molodtsov I., Kandar B.M., Burdelya L.G., Abrams S.I., Gudkov A.V. Signaling through TLR5 mitigates lethal radiation damage by neutrophil-dependent release of MMP-9. Cell Death Discov. 2021;7:266. doi: 10.1038/s41420-021-00642-6. PubMed DOI PMC

Burdelya L.G., Krivokrysenko V.I., Tallant T.C., Strom E., Gleiberman A.S., Gupta D., Kurnasov O.V., Fort F.L., Osterman A.L., Didonato J.A., et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 2008;320:226–230. doi: 10.1126/science.1154986. PubMed DOI PMC

Liu C., Zhang C., Mitchel R.E., Cui J., Lin J., Yang Y., Liu X., Cai J. A critical role of toll-like receptor 4 (TLR4) and its’ in vivo ligands in basal radio-resistance. Cell Death Dis. 2013;4:e649. doi: 10.1038/cddis.2013.161. PubMed DOI PMC

Djureinovic D., Wang M., Kluger H.M. Agonistic CD40 Antibodies in Cancer Treatment. Cancers. 2021;13:1302. doi: 10.3390/cancers13061302. PubMed DOI PMC

Bories J.C., Willerford D.M., Grevin D., Davidson L., Camus A., Martin P., Stehelin D., Alt F.W. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene. Nature. 1995;377:635–638. doi: 10.1038/377635a0. PubMed DOI

Duddy M.E., Alter A., Bar-Or A. Distinct profiles of human B cell effector cytokines: A role in immune regulation? J. Immunol. 2004;172:3422–3427. doi: 10.4049/jimmunol.172.6.3422. PubMed DOI

Muthusamy N., Barton K., Leiden J.M. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature. 1995;377:639–642. doi: 10.1038/377639a0. PubMed DOI

Hipp N., Symington H., Pastoret C., Caron G., Monvoisin C., Tarte K., Fest T., Delaloy C. IL-2 imprints human naive B cell fate towards plasma cell through ERK/ELK1-mediated BACH2 repression. Nat. Commun. 2017;8:1443. doi: 10.1038/s41467-017-01475-7. PubMed DOI PMC

Bonecchi R., Bianchi G., Bordignon P.P., D’Ambrosio D., Lang R., Borsatti A., Sozzani S., Allavena P., Gray P.A., Mantovani A., et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 1998;187:129–134. doi: 10.1084/jem.187.1.129. PubMed DOI PMC

Korbecki J., Kojder K., Siminska D., Bohatyrewicz R., Gutowska I., Chlubek D., Baranowska-Bosiacka I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. Int. J. Mol. Sci. 2020;21:8412. doi: 10.3390/ijms21218412. PubMed DOI PMC

Wiedemann G.M., Knott M.M., Vetter V.K., Rapp M., Haubner S., Fesseler J., Kuhnemuth B., Layritz P., Thaler R., Kruger S., et al. Cancer cell-derived IL-1alpha induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology. 2016;5:e1175794. doi: 10.1080/2162402X.2016.1175794. PubMed DOI PMC

Karasaki T., Qiang G., Anraku M., Sun Y., Shinozaki-Ushiku A., Sato E., Kashiwabara K., Nagayama K., Nitadori J.I., Sato M., et al. High CCR4 expression in the tumor microenvironment is a poor prognostic indicator in lung adenocarcinoma. J. Thorac. Dis. 2018;10:4741–4750. doi: 10.21037/jtd.2018.07.45. PubMed DOI PMC

Allison S.J. Kidney cancer: CCR4: A new target for RCC. Nat. Rev. Nephrol. 2017;13:192. doi: 10.1038/nrneph.2017.14. PubMed DOI

Lee J.H., Cho Y.S., Lee J.Y., Kook M.C., Park J.W., Nam B.H., Bae J.M. The chemokine receptor CCR4 is expressed and associated with a poor prognosis in patients with gastric cancer. Ann. Surg. 2009;249:933–941. doi: 10.1097/SLA.0b013e3181a77ccc. PubMed DOI

Li J.Y., Ou Z.L., Yu S.J., Gu X.L., Yang C., Chen A.X., Di G.H., Shen Z.Z., Shao Z.M. The chemokine receptor CCR4 promotes tumor growth and lung metastasis in breast cancer. Breast Cancer Res. Treat. 2012;131:837–848. doi: 10.1007/s10549-011-1502-6. PubMed DOI

Wang L., Zhang M., Zhu Y., Zhang X., Yang Y., Wang C. CCR4 Expression Is Associated with Poor Prognosis in Patients with Early Stage (pN0) Oral Tongue Cancer. J. Oral Maxillofac. Surg. 2019;77:426–432. doi: 10.1016/j.joms.2018.09.035. PubMed DOI

Zhang Y., Chen K., Li L., Mao W., Shen D., Yao N., Zhang L. CCR4 is a prognostic biomarker and correlated with immune infiltrates in head and neck squamous cell carcinoma. Ann. Transl. Med. 2021;9:1443. doi: 10.21037/atm-21-3936. PubMed DOI PMC

Meng L., He X., Hong Q., Qiao B., Zhang X., Wu B., Zhang X., Wei Y., Li J., Ye Z., et al. CCR4, CCR8, and P2RY14 as Prognostic Factors in Head and Neck Squamous Cell Carcinoma Are Involved in the Remodeling of the Tumor Microenvironment. Front. Oncol. 2021;11:618187. doi: 10.3389/fonc.2021.618187. PubMed DOI PMC

Zhong Y., Lin Z., Lu J., Lin X., Xu W., Wang N., Huang S., Wang Y., Zhu Y., Chen Z., et al. CCL2-CCL5/CCR4 contributed to radiation-induced epithelial-mesenchymal transition of HPAEpiC cells via the ERK signaling pathways. Am. J. Transl. Res. 2019;11:733–743. PubMed PMC

Rizeq B., Malki M.I. The Role of CCL21/CCR7 Chemokine Axis in Breast Cancer Progression. Cancers. 2020;12:1036. doi: 10.3390/cancers12041036. PubMed DOI PMC

Brandum E.P., Jorgensen A.S., Rosenkilde M.M., Hjorto G.M. Dendritic Cells and CCR7 Expression: An Important Factor for Autoimmune Diseases, Chronic Inflammation, and Cancer. Int. J. Mol. Sci. 2021;22:8340. doi: 10.3390/ijms22158340. PubMed DOI PMC

Christensen E., Pintilie M., Evans K.R., Lenarduzzi M., Menard C., Catton C.N., Diamandis E.P., Bristow R.G. Longitudinal cytokine expression during IMRT for prostate cancer and acute treatment toxicity. Clin. Cancer Res. 2009;15:5576–5583. doi: 10.1158/1078-0432.CCR-09-0245. PubMed DOI

Gao J., Zhao L., Wan Y.Y., Zhu B. Mechanism of Action of IL-7 and Its Potential Applications and Limitations in Cancer Immunotherapy. Int. J. Mol. Sci. 2015;16:10267–10280. doi: 10.3390/ijms160510267. PubMed DOI PMC

Byun H.K., Kim K.J., Han S.C., Seong J. Effect of Interleukin-7 on Radiation-Induced Lymphopenia and Its Antitumor Effects in a Mouse Model. Int. J. Radiat. Oncol. Biol. Phys. 2021;109:1559–1569. doi: 10.1016/j.ijrobp.2020.12.004. PubMed DOI

Murn J., Mlinaric-Rascan I., Vaigot P., Alibert O., Frouin V., Gidrol X. A Myc-regulated transcriptional network controls B-cell fate in response to BCR triggering. BMC Genom. 2009;10:323. doi: 10.1186/1471-2164-10-323. PubMed DOI PMC

Preston G.C., Sinclair L.V., Kaskar A., Hukelmann J.L., Navarro M.N., Ferrero I., MacDonald H.R., Cowling V.H., Cantrell D.A. Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes. EMBO J. 2015;34:2008–2024. doi: 10.15252/embj.201490252. PubMed DOI PMC

Sinclair L.V., Rolf J., Emslie E., Shi Y.B., Taylor P.M., Cantrell D.A. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 2013;14:500–508. doi: 10.1038/ni.2556. PubMed DOI PMC

Kabilan U., Graber T.E., Alain T., Klokov D. Ionizing Radiation and Translation Control: A Link to Radiation Hormesis? Int. J. Mol. Sci. 2020;21:6650. doi: 10.3390/ijms21186650. PubMed DOI PMC

Wilkinson S.E., Nixon J.S. T-cell signal transduction and the role of protein kinase C. Cell Mol. Life Sci. 1998;54:1122–1144. doi: 10.1007/s000180050241. PubMed DOI PMC

Weigel C., Veldwijk M.R., Oakes C.C., Seibold P., Slynko A., Liesenfeld D.B., Rabionet M., Hanke S.A., Wenz F., Sperk E., et al. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nat. Commun. 2016;7:10893. doi: 10.1038/ncomms10893. PubMed DOI PMC

Yu J.B., Cramer L.D., Herrin J., Soulos P.R., Potosky A.L., Gross C.P. Stereotactic body radiation therapy versus intensity-modulated radiation therapy for prostate cancer: Comparison of toxicity. J. Clin. Oncol. 2014;32:1195–1201. doi: 10.1200/JCO.2013.53.8652. PubMed DOI PMC

Pan H.Y., Jiang J., Hoffman K.E., Tang C., Choi S.L., Nguyen Q.N., Frank S.J., Anscher M.S., Shih Y.T., Smith B.D. Comparative Toxicities and Cost of Intensity-Modulated Radiotherapy, Proton Radiation, and Stereotactic Body Radiotherapy Among Younger Men with Prostate Cancer. J. Clin. Oncol. 2018;36:1823–1830. doi: 10.1200/JCO.2017.75.5371. PubMed DOI PMC

Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum Associates Inc.; Hillsdale, NJ, USA: 1988.

O’Brien G., Cruz-Garcia L., Majewski M., Grepl J., Abend M., Port M., Tichy A., Sirak I., Malkova A., Donovan E., et al. FDXR is a biomarker of radiation exposure in vivo. Sci. Rep. 2018;8:684. doi: 10.1038/s41598-017-19043-w. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...