Epigenetic regulation of OAS2 shows disease-specific DNA methylation profiles at individual CpG sites
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27572959
PubMed Central
PMC5004144
DOI
10.1038/srep32579
PII: srep32579
Knihovny.cz E-zdroje
- MeSH
- 2',5'-oligoadenylátsynthetasa genetika metabolismus MeSH
- CpG ostrůvky * MeSH
- epigeneze genetická * MeSH
- lidé MeSH
- metylace DNA MeSH
- nádory hlavy a krku genetika metabolismus patologie MeSH
- nádory jazyka genetika metabolismus patologie MeSH
- promotorové oblasti (genetika) MeSH
- psoriáza genetika metabolismus patologie MeSH
- retrospektivní studie MeSH
- spinocelulární karcinom genetika metabolismus patologie MeSH
- studie případů a kontrol MeSH
- tonzilární nádory genetika metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2',5'-oligoadenylátsynthetasa MeSH
- OAS2 protein, human MeSH Prohlížeč
Epigenetic modifications are essential regulators of biological processes. Decreased DNA methylation of OAS2 (2'-5'-Oligoadenylate Synthetase 2), encoding an antiviral protein, has been seen in psoriasis. To provide further insight into the epigenetic regulation of OAS2, we performed pyrosequencing to detect OAS2 DNA methylation status at 11 promoter and first exon located CpG sites in psoriasis (n = 12) and two common subtypes of squamous cell carcinoma (SCC) of the head and neck: tongue (n = 12) and tonsillar (n = 11). Compared to corresponding controls, a general hypomethylation was seen in psoriasis. In tongue and tonsillar SCC, hypomethylation was found at only two CpG sites, the same two sites that were least demethylated in psoriasis. Despite differences in the specific residues targeted for methylation/demethylation, OAS2 expression was upregulated in all conditions and correlations between methylation and expression were seen in psoriasis and tongue SCC. Distinctive methylation status at four successively located CpG sites within a genomic area of 63 bp reveals a delicately integrated epigenetic program and indicates that detailed analysis of individual CpGs provides additional information into the mechanisms of epigenetic regulation in specific disease states. Methylation analyses as clinical biomarkers need to be tailored according to disease-specific sites.
Department of Clinical Sciences ENT Umeå University Umeå Sweden
Department of Medical Biosciences Pathology Umeå University Umeå Sweden
Institut de Génétique Moléculaire Université Paris 7 Hôpital St Louis Paris France
RECAMO Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Ziller M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013). PubMed PMC
Smith Z. D. & Meissner A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013). PubMed
Jones P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012). PubMed
Plongthongkum N., Diep D. H. & Zhang K. Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat. Rev. Genet. 15, 647–661 (2014). PubMed
Schubeler D. Function and information content of DNA methylation. Nature 517, 321–326 (2015). PubMed
Bock C. Analysing and interpreting DNA methylation data. Nat. Rev. Genet. 13, 705–719 (2012). PubMed
Choi U. Y., Kang J. S., Hwang Y. S. & Kim Y. J. Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases. Exp. Mol. Med. 47, e144 (2015). PubMed PMC
Dar A. A. et al. Extracellular 2′5′-oligoadenylate synthetase 2 mediates T-cell receptor CD3-zeta chain down-regulation via caspase-3 activation in oral cancer. Immunology 147, 251–264 (2016). PubMed PMC
Mozzi A. et al. OASes and STING: adaptive evolution in concert. Genome Biol. Evol. 7, 1016–1032 (2015). PubMed PMC
Dan M., Zheng D., Field L. L. & Bonnevie-Nielsen V. Induction and activation of antiviral enzyme 2′,5′-oligoadenylate synthetase by in vitro transcribed insulin mRNA and other cellular RNAs. Mol. Biol. Rep. 39, 7813–7822 (2012). PubMed
Dugan J. W. et al. Nucleotide oligomerization domain-2 interacts with 2′-5′-oligoadenylate synthetase type 2 and enhances RNase-L function in THP-1 cells. Mol. immunol. 47, 560–566 (2009). PubMed PMC
Perera G. K., Di Meglio P. & Nestle F. O. Psoriasis. Annu. rev. pathol. 7, 385–422 (2012). PubMed
Keermann M. et al. Transcriptional landscape of psoriasis identifies the involvement of IL36 and IL36RN. BMC Genomics 16, 322 (2015). PubMed PMC
Roberson E. D. et al. A subset of methylated CpG sites differentiate psoriatic from normal skin. J. Invest. Dermatol. 132, 583–592 (2012). PubMed PMC
Kamangar F., Dores G. M. & Anderson W. F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 24, 2137–2150 (2006). PubMed
Pezzuto F. et al. Update on Head and Neck Cancer: Current Knowledge on Epidemiology, Risk Factors, Molecular Features and Novel Therapies. Oncology 89, 125–136 (2015). PubMed
Gupta K. & Metgud R. Evidences suggesting involvement of viruses in oral squamous cell carcinoma. Pathol. Res. Int. 2013, 642496 (2013). PubMed PMC
Abogunrin S., Di Tanna G. L., Keeping S., Carroll S. & Iheanacho I. Prevalence of human papillomavirus in head and neck cancers in European populations: a meta-analysis. BMC Cancer 14, 968 (2014). PubMed PMC
Loizou C. et al. Incidence of tonsillar cancer in northern Sweden: impact of human papilloma virus. Oncol. Lett. (2015). PubMed PMC
Sgaramella N. et al. Expression of p16 in squamous cell carcinoma of the mobile tongue is independent of HPV infection despite presence of the HPV-receptor syndecan-1. Br. J. Cancer 113, 321–326 (2015). PubMed PMC
Colella S., Shen L., Baggerly K. A., Issa J. P. & Krahe R. Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. BioTechniques 35, 146–150 (2003). PubMed
Hoffmann M. et al. HPV DNA, E6*I-mRNA expression and p16INK4A immunohistochemistry in head and neck cancer - how valid is p16INK4A as surrogate marker? Cancer Lett. 323, 88–96 (2012). PubMed
Detre S., Saclani Jotti G. & Dowsett M. A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J. Clin. Pathol. 48, 876–878 (1995). PubMed PMC
Gu X., Nylander E., Coates P. J., Fahraeus R. & Nylander K. Correlation between Reversal of DNA Methylation and Clinical Symptoms in Psoriatic Epidermis Following Narrow-Band UVB Phototherapy. J. Invest. Dermatol. 135, 2077–2083 (2015). PubMed PMC
Gu X., Nylander E., Coates P. J. & Nylander K. Oxidation reduction is a key process for successful treatment of psoriasis by narrow-band UVB phototherapy. Acta Derm.-Venereol. 95, 140–146 (2015). PubMed
Roadmap Epigenomics C. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015). PubMed PMC
Karolchik D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004). PubMed PMC
Lokk K. et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome biol. 15, r54 (2014). PubMed PMC
Bibikova M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011). PubMed
Peters T. J. et al. De novo identification of differentially methylated regions in the human genome. Epigenet. Chromatin 8, 6 (2015). PubMed PMC
Claus R. et al. Quantitative DNA methylation analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis in chronic lymphocytic leukemia. J. Clin. Oncol. 30, 2483–2491 (2012). PubMed PMC
Nusgen N. et al. Inter-locus as well as intra-locus heterogeneity in LINE-1 promoter methylation in common human cancers suggests selective demethylation pressure at specific CpGs. Clin. epigenet. 7, 17 (2015). PubMed PMC
Gutierrez-Arcelus M. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. Life 2, e00523 (2013). PubMed PMC
Marchal C. & Miotto B. Emerging concept in DNA methylation: role of transcription factors in shaping DNA methylation patterns. J. Cell. Physiol. 230, 743–751 (2015). PubMed
Hovanessian A. G. & Justesen J. The human 2′-5′oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond formation. Biochimie 89, 779–788 (2007). PubMed
Heyn H. & Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat. Rev. Genet. 13, 679–692 (2012). PubMed
Mikeska T. & Craig J. M. DNA methylation biomarkers: cancer and beyond. Genes (Basel) 5, 821–864 (2014). PubMed PMC
AP001056.1, A Prognosis-Related Enhancer RNA in Squamous Cell Carcinoma of the Head and Neck