Centromere size scales with genome size across Eukaryotes

. 2021 Oct 06 ; 11 (1) : 19811. [epub] 20211006

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34615955
Odkazy

PubMed 34615955
PubMed Central PMC8494932
DOI 10.1038/s41598-021-99386-7
PII: 10.1038/s41598-021-99386-7
Knihovny.cz E-zdroje

Previous studies on grass species suggested that the total centromere size (sum of all centromere sizes in a cell) may be determined by the genome size, possibly because stable scaling is important for proper cell division. However, it is unclear whether this relationship is universal. Here we analyze the total centromere size using the CenH3-immunofluorescence area as a proxy in 130 taxa including plants, animals, fungi, and protists. We verified the reliability of our methodological approach by comparing our measurements with available ChIP-seq-based measurements of the size of CenH3-binding domains. Data based on these two independent methods showed the same positive relationship between the total centromere size and genome size. Our results demonstrate that the genome size is a strong predictor (R-squared = 0.964) of the total centromere size universally across Eukaryotes. We also show that this relationship is independent of phylogenetic relatedness and centromere type (monocentric, metapolycentric, and holocentric), implying a common mechanism maintaining stable total centromere size in Eukaryotes.

Zobrazit více v PubMed

Talbert PB, Henikoff S. What makes a centromere? Exp. Cell Res. 2020;389:111895. doi: 10.1016/j.yexcr.2020.111895. PubMed DOI

Murillo-Pineda M, Jansen LET. Genetics, epigenetics and back again: Lessons learned from neocentromeres. Exp. Cell Res. 2020;389:111909. doi: 10.1016/j.yexcr.2020.111909. PubMed DOI

Drinnenberg IA, deYoung D, Henikoff S, Malik HS. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. Elife. 2014;3:3676. doi: 10.7554/eLife.03676. PubMed DOI PMC

Krátká M, Šmerda J, Lojdová K, Bureš P, Zedek F. Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae. Front. Plant Sci. 2021;12:642661. doi: 10.3389/fpls.2021.642661. PubMed DOI PMC

Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014;156:1247–1258. doi: 10.1016/j.cell.2014.01.049. PubMed DOI PMC

Navarro-Mendoza MI, Pérez-Arques C, Panchal S, Nicolás FE, Mondo SJ, Ganguly P, et al. Early diverging fungus mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr. Biol. 2019;29:3791–3802. doi: 10.1016/j.cub.2019.09.024. PubMed DOI PMC

Zhang H, Dawe RK. Total centromere size and genome size are strongly correlated in ten grass species. Chromosome Res. 2012;20:403–412. doi: 10.1007/s10577-012-9284-1. PubMed DOI PMC

Bodor, D.L., Mata, J.F., Sergeev, M., David, A.F., Salimian, K.J., Panchenko, T. et al. The quantitative architecture of centromeric chromatin. Elife3, e02137 (2014) PubMed PMC

Wang K, Wu Y, Zhang W, Dawe RK, Jiang J. Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res. 2014;24:107–116. doi: 10.1101/gr.160887.113. PubMed DOI PMC

Wang, N., Liu, J., Ricci, W.A., Gent, J.I., Dawe, R.K. Maize centromeric chromatin scales with changes in genome size. Genetics217, iyab020 (2021) PubMed PMC

Bennett MD, Smith JB, Ward J, Jenkins G. The relationship between nuclear DNA content and centromere volume in higher plants. J. Cell Sci. 1981;47:91–115. doi: 10.1242/jcs.47.1.91. PubMed DOI

Neumann, P., Navrátilová, A., Schroeder-Reiter, E., Koblížková, A., Steinbauerová, V., Chocholová, E., et al. Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains. PLoS Genet8, e1002777 (2012). PubMed PMC

Zedek F, Bureš P. Holocentric chromosomes: From tolerance to fragmentation to colonization of the land. Ann. Bot. 2018;121:9–16. doi: 10.1093/aob/mcx118. PubMed DOI PMC

Levy DL, Heald R. Mechanisms of intracellular scaling. Annu. Rev. Cell Dev. Biol. 2012;28:113–135. doi: 10.1146/annurev-cellbio-092910-154158. PubMed DOI

Heslop-Harrison J, Chapman V, Bennett MD. Heteromorphic bivalent association at meiosis in bread wheat. Heredity. 1985;55:93–103. doi: 10.1038/hdy.1985.75. DOI

Irvine DV, Amor DJ, Perry J, Sirvent N, Pedeutour F, Choo KHA, et al. Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res. 2004;12:805–815. doi: 10.1007/s10577-005-5377-4. PubMed DOI

Drpic D, Almeida AC, Aguiar P, Renda F, Damas J, Lewin HA, et al. Chromosome segregation is biased by Kinetochore size. Curr. Biol. 2018;28:1344–1356.e5. doi: 10.1016/j.cub.2018.03.023. PubMed DOI PMC

Wang N, Dawe RK. Centromere size and its relationship to haploid formation in plants. Mol. Plant. 2018;11:398–406. doi: 10.1016/j.molp.2017.12.009. PubMed DOI

Worrall JT, Tamura N, Mazzagatti A, Shaikh N, van Lingen T, Bakker B, et al. Non-random Mis-segregation of Human Chromosomes. Cell Rep. 2018;23:3366–3380. doi: 10.1016/j.celrep.2018.05.047. PubMed DOI PMC

Sánchez L, Martínez P, Goyanes V. Analysis of centromere size in human chromosomes 1, 9, 15, and 16 by electron microscopy. Genome. 1991;34:710–713. doi: 10.1139/g91-109. PubMed DOI

Martorell MR, Benet J, Márquez C, Egozcue J, Navarro J. Correlation between centromere and chromosome length in human male pronuclear chromosomes: ultrastructural analysis. Zygote. 2000;8:79–85. doi: 10.1017/S096719940000085X. PubMed DOI

Jenkins G, Bennett MD. The intranuclear relationship between centromere volume and chromosome size in Festuca scariosa X drymeja. J. Cell Sci. 1981;47:117–125. doi: 10.1242/jcs.47.1.117. PubMed DOI

Koornneef M, Fransz P, de Jong H. Cytogenetic tools for Arabidopsis thaliana. Chromosome Res. 2003;11:183–194. doi: 10.1023/A:1022827624082. PubMed DOI

Moens PB. Kinetochore microtubule numbers of different sized chromosomes. J. Cell Biol. 1979;83:556–561. doi: 10.1083/jcb.83.3.556. PubMed DOI PMC

Cherry LM, Faulkner AJ, Grossberg LA, Balczon R. Kinetochore size variation in mammalian chromosomes: an image analysis study with evolutionary implications. J. Cell Sci. 1989;92:281–289. doi: 10.1242/jcs.92.2.281. PubMed DOI

McEwen BF, Ding Y, Heagle AB. Relevance of kinetochore size and microtubule-binding capacity for stable chromosome attachment during mitosis in PtK1 cells. Chromosome Res. 1998;6:123–132. doi: 10.1023/A:1009239013215. PubMed DOI

Bureš P, Zedek F. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution. 2014;68:2412–2420. PubMed

Kursel LE, Malik HS. The cellular mechanisms and consequences of centromere drive. Curr. Opin. Cell Biol. 2018;52:58–65. doi: 10.1016/j.ceb.2018.01.011. PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Gregory, T.R. Animal Genome Size Database http://www.genomesize.com (2021).

Leitch, I.J., Johnston, E., Pellicer, J., Hidalgo, O., Bennett, M.D. Plant DNA C-values database (release 7.1, Apr 2019) https://cvalues.science.kew.org/ (2019).

Šmarda P, Knápek O, Březinová A, Horová L, Grulich V, Danihelka J, et al. Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia. 2019;91:117–142. doi: 10.23855/preslia.2019.117. DOI

Kullman, B., Tamm, H., Kullman, K. Fungal Genome Size Database http://www.zbi.ee/fungal-genomesize/ (2005).

Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S. The caper package: comparative analysis of phylogenetics and evolution in R. R Package Version 5. https://cran.r-project.org/web/packages/caper/ (2013).

R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).

Garamszegi LZ. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer; 2014.

Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI

Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. doi: 10.1002/ajb2.1019. PubMed DOI

Xie DF, Tan JB, Yu Y, Gui LJ, Su DM, Zhou SD, et al. Insights into phylogeny, age and evolution of Allium (Amaryllidaceae) based on the whole plastome sequences. Ann. Bot. 2020;125:1039–1055. doi: 10.1093/aob/mcaa024. PubMed DOI PMC

Neumann P, Oliveira L, Čížková J, Jang TS, Klemme S, Novák P, et al. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. New Phytol. 2021;229:2365–2377. doi: 10.1111/nph.17003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace