Centromere size scales with genome size across Eukaryotes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34615955
PubMed Central
PMC8494932
DOI
10.1038/s41598-021-99386-7
PII: 10.1038/s41598-021-99386-7
Knihovny.cz E-zdroje
- MeSH
- centromera fyziologie MeSH
- délka genomu MeSH
- houby genetika MeSH
- molekulární evoluce MeSH
- rostliny genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Previous studies on grass species suggested that the total centromere size (sum of all centromere sizes in a cell) may be determined by the genome size, possibly because stable scaling is important for proper cell division. However, it is unclear whether this relationship is universal. Here we analyze the total centromere size using the CenH3-immunofluorescence area as a proxy in 130 taxa including plants, animals, fungi, and protists. We verified the reliability of our methodological approach by comparing our measurements with available ChIP-seq-based measurements of the size of CenH3-binding domains. Data based on these two independent methods showed the same positive relationship between the total centromere size and genome size. Our results demonstrate that the genome size is a strong predictor (R-squared = 0.964) of the total centromere size universally across Eukaryotes. We also show that this relationship is independent of phylogenetic relatedness and centromere type (monocentric, metapolycentric, and holocentric), implying a common mechanism maintaining stable total centromere size in Eukaryotes.
Zobrazit více v PubMed
Talbert PB, Henikoff S. What makes a centromere? Exp. Cell Res. 2020;389:111895. doi: 10.1016/j.yexcr.2020.111895. PubMed DOI
Murillo-Pineda M, Jansen LET. Genetics, epigenetics and back again: Lessons learned from neocentromeres. Exp. Cell Res. 2020;389:111909. doi: 10.1016/j.yexcr.2020.111909. PubMed DOI
Drinnenberg IA, deYoung D, Henikoff S, Malik HS. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. Elife. 2014;3:3676. doi: 10.7554/eLife.03676. PubMed DOI PMC
Krátká M, Šmerda J, Lojdová K, Bureš P, Zedek F. Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae. Front. Plant Sci. 2021;12:642661. doi: 10.3389/fpls.2021.642661. PubMed DOI PMC
Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell. 2014;156:1247–1258. doi: 10.1016/j.cell.2014.01.049. PubMed DOI PMC
Navarro-Mendoza MI, Pérez-Arques C, Panchal S, Nicolás FE, Mondo SJ, Ganguly P, et al. Early diverging fungus mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr. Biol. 2019;29:3791–3802. doi: 10.1016/j.cub.2019.09.024. PubMed DOI PMC
Zhang H, Dawe RK. Total centromere size and genome size are strongly correlated in ten grass species. Chromosome Res. 2012;20:403–412. doi: 10.1007/s10577-012-9284-1. PubMed DOI PMC
Bodor, D.L., Mata, J.F., Sergeev, M., David, A.F., Salimian, K.J., Panchenko, T. et al. The quantitative architecture of centromeric chromatin. Elife3, e02137 (2014) PubMed PMC
Wang K, Wu Y, Zhang W, Dawe RK, Jiang J. Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res. 2014;24:107–116. doi: 10.1101/gr.160887.113. PubMed DOI PMC
Wang, N., Liu, J., Ricci, W.A., Gent, J.I., Dawe, R.K. Maize centromeric chromatin scales with changes in genome size. Genetics217, iyab020 (2021) PubMed PMC
Bennett MD, Smith JB, Ward J, Jenkins G. The relationship between nuclear DNA content and centromere volume in higher plants. J. Cell Sci. 1981;47:91–115. doi: 10.1242/jcs.47.1.91. PubMed DOI
Neumann, P., Navrátilová, A., Schroeder-Reiter, E., Koblížková, A., Steinbauerová, V., Chocholová, E., et al. Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains. PLoS Genet8, e1002777 (2012). PubMed PMC
Zedek F, Bureš P. Holocentric chromosomes: From tolerance to fragmentation to colonization of the land. Ann. Bot. 2018;121:9–16. doi: 10.1093/aob/mcx118. PubMed DOI PMC
Levy DL, Heald R. Mechanisms of intracellular scaling. Annu. Rev. Cell Dev. Biol. 2012;28:113–135. doi: 10.1146/annurev-cellbio-092910-154158. PubMed DOI
Heslop-Harrison J, Chapman V, Bennett MD. Heteromorphic bivalent association at meiosis in bread wheat. Heredity. 1985;55:93–103. doi: 10.1038/hdy.1985.75. DOI
Irvine DV, Amor DJ, Perry J, Sirvent N, Pedeutour F, Choo KHA, et al. Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res. 2004;12:805–815. doi: 10.1007/s10577-005-5377-4. PubMed DOI
Drpic D, Almeida AC, Aguiar P, Renda F, Damas J, Lewin HA, et al. Chromosome segregation is biased by Kinetochore size. Curr. Biol. 2018;28:1344–1356.e5. doi: 10.1016/j.cub.2018.03.023. PubMed DOI PMC
Wang N, Dawe RK. Centromere size and its relationship to haploid formation in plants. Mol. Plant. 2018;11:398–406. doi: 10.1016/j.molp.2017.12.009. PubMed DOI
Worrall JT, Tamura N, Mazzagatti A, Shaikh N, van Lingen T, Bakker B, et al. Non-random Mis-segregation of Human Chromosomes. Cell Rep. 2018;23:3366–3380. doi: 10.1016/j.celrep.2018.05.047. PubMed DOI PMC
Sánchez L, Martínez P, Goyanes V. Analysis of centromere size in human chromosomes 1, 9, 15, and 16 by electron microscopy. Genome. 1991;34:710–713. doi: 10.1139/g91-109. PubMed DOI
Martorell MR, Benet J, Márquez C, Egozcue J, Navarro J. Correlation between centromere and chromosome length in human male pronuclear chromosomes: ultrastructural analysis. Zygote. 2000;8:79–85. doi: 10.1017/S096719940000085X. PubMed DOI
Jenkins G, Bennett MD. The intranuclear relationship between centromere volume and chromosome size in Festuca scariosa X drymeja. J. Cell Sci. 1981;47:117–125. doi: 10.1242/jcs.47.1.117. PubMed DOI
Koornneef M, Fransz P, de Jong H. Cytogenetic tools for Arabidopsis thaliana. Chromosome Res. 2003;11:183–194. doi: 10.1023/A:1022827624082. PubMed DOI
Moens PB. Kinetochore microtubule numbers of different sized chromosomes. J. Cell Biol. 1979;83:556–561. doi: 10.1083/jcb.83.3.556. PubMed DOI PMC
Cherry LM, Faulkner AJ, Grossberg LA, Balczon R. Kinetochore size variation in mammalian chromosomes: an image analysis study with evolutionary implications. J. Cell Sci. 1989;92:281–289. doi: 10.1242/jcs.92.2.281. PubMed DOI
McEwen BF, Ding Y, Heagle AB. Relevance of kinetochore size and microtubule-binding capacity for stable chromosome attachment during mitosis in PtK1 cells. Chromosome Res. 1998;6:123–132. doi: 10.1023/A:1009239013215. PubMed DOI
Bureš P, Zedek F. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution. 2014;68:2412–2420. PubMed
Kursel LE, Malik HS. The cellular mechanisms and consequences of centromere drive. Curr. Opin. Cell Biol. 2018;52:58–65. doi: 10.1016/j.ceb.2018.01.011. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Gregory, T.R. Animal Genome Size Database http://www.genomesize.com (2021).
Leitch, I.J., Johnston, E., Pellicer, J., Hidalgo, O., Bennett, M.D. Plant DNA C-values database (release 7.1, Apr 2019) https://cvalues.science.kew.org/ (2019).
Šmarda P, Knápek O, Březinová A, Horová L, Grulich V, Danihelka J, et al. Genome sizes and genomic guanine+cytosine (GC) contents of the Czech vascular flora with new estimates for 1700 species. Preslia. 2019;91:117–142. doi: 10.23855/preslia.2019.117. DOI
Kullman, B., Tamm, H., Kullman, K. Fungal Genome Size Database http://www.zbi.ee/fungal-genomesize/ (2005).
Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S. The caper package: comparative analysis of phylogenetics and evolution in R. R Package Version 5. https://cran.r-project.org/web/packages/caper/ (2013).
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).
Garamszegi LZ. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Springer; 2014.
Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI
Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. doi: 10.1002/ajb2.1019. PubMed DOI
Xie DF, Tan JB, Yu Y, Gui LJ, Su DM, Zhou SD, et al. Insights into phylogeny, age and evolution of Allium (Amaryllidaceae) based on the whole plastome sequences. Ann. Bot. 2020;125:1039–1055. doi: 10.1093/aob/mcaa024. PubMed DOI PMC
Neumann P, Oliveira L, Čížková J, Jang TS, Klemme S, Novák P, et al. Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus Cuscuta. New Phytol. 2021;229:2365–2377. doi: 10.1111/nph.17003. PubMed DOI
Centromere drive may propel the evolution of chromosome and genome size in plants
Kinetochore size scales with chromosome size in bimodal karyotypes of Agavoideae