Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions

. 2022 Jul 04 ; 34 (7) : 2475-2491.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35441689

The evolution of eukaryotic genomes is accompanied by fluctuations in chromosome number, reflecting cycles of chromosome number increase (polyploidy and centric fissions) and decrease (chromosome fusions). Although all chromosome fusions result from DNA recombination between two or more nonhomologous chromosomes, several mechanisms of descending dysploidy are exploited by eukaryotes to reduce their chromosome number. Genome sequencing and comparative genomics have accelerated the identification of inter-genome chromosome collinearity and gross chromosomal rearrangements and have shown that end-to-end chromosome fusions (EEFs) and nested chromosome fusions (NCFs) may have played a more important role in the evolution of eukaryotic karyotypes than previously thought. The present review aims to summarize the limited knowledge on the origin, frequency, and evolutionary implications of EEF and NCF events in eukaryotes and especially in land plants. The interactions between nonhomologous chromosomes in interphase nuclei and chromosome (mis)pairing during meiosis are examined for their potential importance in the origin of EEFs and NCFs. The remaining open questions that need to be addressed are discussed.

Zobrazit více v PubMed

Adikusuma F, Williams N, Grutzner F, Hughes J, Thomas P (2017) Targeted deletion of an entire chromosome using CRISPR/Cas9. Mol Ther  25: 1736–1738 PubMed PMC

Agudo M, Abad JP, Molina I, Losada A, Ripoll P, Villasante A (2000) A dicentric chromosome of Drosophila melanogaster showing alternate centromere inactivation. Chromosoma  109: 190–196 PubMed

Aguilar M, Prieto P (2021) Telomeres and subtelomeres dynamics in the context of early chromosome interactions during meiosis and their implications in plant breeding. Front Plant Sci  12: 672489. PubMed PMC

Alleva B, Smolikove S (2017) Moving and stopping: regulation of chromosome movement to promote meiotic chromosome pairing and synapsis. Nucleus  8: 613–624 PubMed PMC

Armstrong SJ, Franklin FCH, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci  114: 4207–4217 PubMed

Arpòn J, Sakai K, Gaudin V, Andrey P (2021) Spatial modeling of biological patterns shows multiscale organization of Arabidopsis thaliana heterochromatin. Sci Rep  11: 1–17 PubMed PMC

Ashley T (1979) Specific end-to-end attachment of chromosomes in Ornithogalum virens. J Cell Sci  38: 357–367 PubMed

Barra V, Fachinetti D (2018) The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun  9: 1–17 PubMed PMC

Bateson W (1906) The progress of genetic research. In  Wilks W, ed, Report of the Third International Conference on Genetics. Spottiswoode & Co., London, pp 90–97

Belling J (1933) Critical notes on Darlington’s recent advances in cytology. Univ Cal Pubs Bot  17: 75–110

Betekhtin A, Jenkins G, Hasterok R (2014) Reconstructing the evolution of Brachypodium genomes using comparative chromosome painting. PLoS One  9: e115108. PubMed PMC

Birchler JA, Han F (2018) Barbara McClintock’s unsolved chromosomal mysteries: parallels to common rearrangements and karyotype evolution. Plant Cell  30: 771–779 PubMed PMC

Campbell A (1993) Barbara McClintock. Ann Rev Genet  27: 1–32 PubMed

Carlton PM, Cowan CR, Cande WZ (2003) Directed motion of telomeres in the formation of the meiotic bouquet revealed by time course and simulation analysis. Mol Biol Cell  14: 2832–2843 PubMed PMC

Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell  25: 1541–1554 PubMed PMC

Cheng Y, Shang D, Luo M, Huang C, Lai F, Wang X, Zhao Y, Zhang L, Long M, Zhou R, et al. (2020) Whole genome-wide chromosome fusion and new gene birth in the Monopterus albus genome. Cell Biosci  10: 1–14 PubMed PMC

Chiatante G, Giannuzzi G, Calabrese FM, Eichler EE, Ventura M (2017) Centromere destiny in dicentric chromosomes: new insights from the evolution of human chromosome 2 ancestral centromeric region. Mol Biol Evol  34: 1669–1681 PubMed PMC

Cicconardi F, Lewis JJ, Martin SH, Reed RD, Danko CG, Montgomery SH (2021) Chromosome fusion affects genetic diversity and evolutionary turnover of functional loci but consistently depends on chromosome size. Mol Biol Evol  38: 4449–4462 PubMed PMC

Comfort N (2001) The Tangled Field: Barbara McClintock’s Search for the Patterns of Genetic Control. Harvard University, Cambridge

Creighton HB, McClintock B (1931) A correlation of cytological and genetical crossing-over in zea mays. Proc Natl Acad Sci USA  17: 492–497 PubMed PMC

Cremer T, Cremer C (1988) Centennial of Wilhelm Waldeyer's introduction of the term “chromosome” in 1888. Cytogenet Cell Genet  48: 66–67 PubMed

Cremer T, Cremer C (2006) Rise, fall and resurrection of ch0romosome territories: a historical perspective Part I. The rise of chromosome territories. Eur J Histochem  50: 161–176 PubMed

Darlington CD (1932) Recent Advances in Cytology, Churchill. P. Blakiston’s Son and Co., Philadelphia, PA

Darlington CD, Upcott MB (1941) Spontaneous chromosome change. J Genet  41: 297–338

Dawicki-McKenna JM, Black BE (2019) Chromosomes: keeping centromeric chromatin tidy through S phase. Curr Biol  29: R35–R37 PubMed

Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res  6: 551–558 PubMed

Edelson E (2001) Gregor Mendel: And the Roots of Genetics. Oxford University Press, Oxford

Fang T, Dong H, Yu S, Moss JQ, Fontanier CH, Martin DL, Fu J, Wu Y (2020) Sequence-based genetic mapping of Cynodon dactylon Pers. reveals new insights into genome evolution in poaceae. Commun Biol  3: 1–10 PubMed PMC

Fernandez J, Bloomer H, Kellam N, LaRocque JR (2019) Chromosome preference during homologous recombination Repair of DNA double-strand breaks in Drosophila melanogaster. G3: Genes Genom Genet  9: 3773–3780 PubMed PMC

Fonsêca A, Ferraz ME, Pedrosa-Harand A (2016) Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy. Chromosoma  125: 413–421 PubMed

Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci  99: 14584–14589 PubMed PMC

Fu S, Gao Z, Birchler J, Han F (2012) Dicentric chromosome formation and epigenetics of centromere formation in plants. J Genet Genomics  39: 125–130 PubMed

Gao Z, Fu S, Dong Q, Han F, Birchler JA (2011) Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res  19: 755–761 PubMed

Geiser C, Mandáková T, Arrigo N, Lysak MA, Parisod C (2016) Repeated whole-genome duplication, karyotype reshuffling, and biased retention of stress-responding genes in Buckler mustard. Plant Cell  28: 17–27 PubMed PMC

Gordon JL, Byrne KP, Wolfe KH (2011) Mechanisms of chromosome number evolution in yeast. PLoS Genet  7: e1002190. PubMed PMC

Guerra M (2016) Agmatoploidy and symploidy: a critical review. Genet Mol Biol  39: 492–496 PubMed PMC

Guerrero RF, Kirkpatrick M (2014) Local adaptation and the evolution of chromosome fusions. Evolution  68: 2747–2756 PubMed

Guo X, Mandáková T, Trachtová K, Özüdoğru B, Liu J, Lysak MA (2021) Linked by ancestral bonds: multiple whole-genome duplications and reticulate evolution in a Brassicaceae tribe. Mol Biol Evol  38: 1695–1714 PubMed PMC

Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA  103: 3238–3243 PubMed PMC

Han Y, Zhang Z, Liu C, Liu J, Huang S, Jiang J, Jin W (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Natl Acad Sci USA  106: 14937–14941 PubMed PMC

Harman OS (2003) Darlington and the ‘invention’of the chromosome. Endeavour  27: 69–74 PubMed

Harman OS (2004) The Man who Invented the Chromosome: a Life of Cyril Darlington. Harvard University Press, CA, MA, USA

Harman OS (2006) Method as a function of “Disciplinary Landscape”: C.D. Darlington and cytology, genetics and evolution, 1932–1950. J History Biol  39: 165–197 PubMed

Heuser E (1884) Beobachtungen über Zellkerntheilung. Botanisches Zentralblatt  17: 2711

Hill J, Rastas P, Hornett EA, Neethiraj R, Clark N, Morehouse N, de la Paz Celorio-Mancera M, Cols JC, Dircksen H, Wheat CW, et al. (2019) Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Sci Adv  5: eaau3648. PubMed PMC

Hoang PT, Schubert I (2017) Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Chromosoma  126: 729–739 PubMed

Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Guo YL, et al. (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet  43: 476–481 PubMed PMC

Hu Q, Ma Y, Mandáková T, Shi S, Chen C, Sun P, Zhang L, Feng L, Zheng Y, Feng X, Yang W, et al. (2021) Genome evolution of the psammophyte Pugionium for desert adaptation and further speciation. Proc Natl Acad Sci USA  118: e2025711118 PubMed PMC

Hurel A, Phillips D, Vrielynck N, Mézard C, Grelon M, Christophorou N (2018) A cytological approach to studying meiotic recombination and chromosome dynamics in Arabidopsis thaliana male meiocytes in three dimensions. Plant J  95: 385–396 PubMed

Ijdo JW, Baldini A, Ward DC, Reeders ST, Wells RA (1991) Origin of human chromosome 2: an ancestral telomere-telomere fusion. Proc Natl Acad Sci USA  88: 9051–9055 PubMed PMC

Iltis H (2018) Life of Mendel. Routledge, Abingdon

Imai HT (1986) Modes of species differentiation and karyotype alteration in ants and mammals. In  Iwatsuki K, Raven PH, Bock WJ, eds, Modern Aspect of Species. University of Tokyo Press, Tokyo, Japan, pp 87–105

Imai HT, Taylor RW (1989) Chromosomal polymorphisms involving telomere fusion, centromeric inactivation and centromere shift in the ant Myrmecia (pilosula) n = 1. Chromosoma  98: 456–460

Imai HT, Satta Y, Takahata N (2001) Integrative study on chromosome evolution of mammals, ants and wasps based on the minimum interaction theory. J Theor Biol  210: 475–497 PubMed

International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature  463: 763–768 PubMed

Jenkins G, Bennett MD (1981) The intranuclear relationship between centromere volume and chromosome size in Festuca scariosa × drymeja. J Cell Sci  47: 117–125 PubMed

Joachimiak A (1987) Telomere arrangement in interphase nuclei of Allium cepa L. Acta Biol Cracov Ser Bot  29: 64–70

Karimi-Ashtiyani R, Schubert V, Houben A (2021) Only the rye derived part of the 1BL/1RS hybrid centromere incorporates CENH3 of wheat. Front Plant Sci  12: 802222. PubMed PMC

Keller EF (1983) A Feeling for the Organism: The Life and Work of Barbara McClintock. W.H. Freeman and Company, New York, NY

Kim E, Kim J, Kim C, Lee J (2021) Long-read sequencing and de novo genome assemblies reveal complex chromosome end structures caused by telomere dysfunction at the single nucleotide level. Nucleic Acids Res  49: 338–3353 PubMed PMC

Koo DH, Han F, Birchler JA, Jiang J (2011) Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Res  21: 908–914 PubMed PMC

Kotseruba V, Pistrick K, Gernand D, Meister A, Ghukasyan A, Gabrielyan I, Houben A (2005) Characterisation of the low-chromosome number grass Colpodium versicolor (Stev.) Schmalh.(2n = 4) by molecular cytogenetics. Caryologia  58: 241–245

Lee JJ, Lee J, Lee H (2021) Alternative paths to telomere elongation. Semin Cell Dev Biol  113: 88–96 PubMed

Lewis D (1983) Cyril Dean Darlington 1903–1981. Biographical Memoirs of the Royal Society, Vol. 29. Royal Society, London

Li G, Wang L, Yang J, He H, Jin H, Li X, Han X, Zhao X, Dong L, Wang D, et al. (2021a) A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet  53: 574–584 PubMed PMC

Li X, Chengsong Z, Zhongwei L, Yun W, Dabao Z, Guihua B, Weixing S, Ma J, Muehlbauer GJ, Scanlon MJ, Jianming Y, et al. (2011) Chromosome size in diploid eukaryotic species centers on the average length with a conserved boundary. Mol Biol Evol  28: 1901–1911 PubMed PMC

Li Y, Sun P, Lu Z, Chen J, Wang Z, Du X, Zheng Z, Wu Y, Hu H, Yang J, Ma J (2021b) The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding. Hortic Res  8: 54. PubMed PMC

Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature  437: 94–100 PubMed PMC

Lipshitz HD (2021) The origin of GENETICS. Genetics  217: iyaa024 PubMed PMC

Liu Y, Su H, Zhang J, Shi L, Liu Y, Zhang B, Bai H, Liang S, Gao Z, Han F, et al. (2020) Rapid birth or death of centromeres on fragmented chromosomes in maize. Plant Cell  32: 3113–3123 PubMed PMC

Liu Z, Roesti M, Marques D, Hiltbrunner M, Saladin V, Peichel CL (2022) Chromosomal fusions facilitate adaptation to divergent environments in threespine stickleback. Mol Biol Evol  39: msab358. PubMed PMC

Lottersberger F, Karssemeijer RA, Dimitrova N, de Lange T (2015) 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell  163: 880–893 PubMed PMC

Louis EJ, Vershinin AV (2005) Chromosome ends: different sequences may provide conserved functions. Bioessays  27: 685–697 PubMed

Luo J, Sun X, Cormack BP, Boeke JD (2018) Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature  560: 392–396 PubMed PMC

Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Dvorak J, et al. (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA  106: 15780–15785 PubMed PMC

Luo  MC, Gu  YQ, Puiu  D, Wang  H, Wardziok  SO, Deal  KR, Huo  N, Zhu  T, Wang  L, Dvořák  J (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature  551: 498–502 PubMed PMC

Lusinska J, Betekhtin A, Lopez-Alvarez D, Catalan P, Jenkins G, Wolny E, Hasterok R (2019) Comparatively barcoded chromosomes of Brachypodium perennials tell the story of their karyotype structure and evolution. Int J Mol Sci  20: 5557 PubMed PMC

Lysak MA (2014) Live and let die: centromere loss during evolution of plant chromosomes. New Phytologist  203: 1082–1089

Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA  103: 5224–5229 PubMed PMC

Ma J, Bennetzen JL (2006) Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci USA  103: 383–388 PubMed PMC

Ma PF, Liu YL, Jin GH, Liu JX, Wu H, He J, Guo ZH, Li DZ (2021) The Pharus latifolius genome bridges the gap of early grass evolution. Plant Cell  33: 846–864 PubMed PMC

MacKinnon RN, Campbell LJ (2011) The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy. Genet Res Int  2011: 643628. PubMed PMC

Mandáková T, Lysak MA (2018) Post-polyploid diploidization and diversification through dysploid changes. Curr Opin Plant Biol  42: 55–65 PubMed

Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA (2010a) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell  22: 2277–2290 PubMed PMC

Mandáková T, Heenan PB, Lysak MA (2010b) Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evol Biol  10: 1–14 PubMed PMC

Mandáková T, Kovařík A, Zozomová-Lihová J, Shimizu-Inatsugi R, Shimizu KK, Mummenhoff K, Marhold K, Lysak MA (2013) The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell  25:  3280–3295 PubMed PMC

Mandáková T, Schranz ME, Sharbel TF, de Jong H, Lysak MA (2015) Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. Plant J  82: 785–793 PubMed

Mandáková T, Gloss AD, Whiteman NK, Lysak MA (2016) How diploidization turned a tetraploid into a pseudotriploid. Am J Bot  103: 1187–1196 PubMed

Mandáková T, Hloušková P, German D, Lysak MA (2017a) Monophyletic origin and evolution of the largest crucifer genomes. Plant Physiol  174: 2062–2071 PubMed PMC

Mandáková T, Pouch M, Harmanová K, Zhan SH, Mayrose I, Lysak MA (2017b) Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol Ecol  26: 6445–6462 PubMed

Mandáková T, Guo X, Özüdoğru B, Mummenhoff K, Lysak MA (2018) Hybridization‐facilitated genome merger and repeated chromosome fusion after 8 million years. Plant J  96: 748–760 PubMed

Mandáková T, Pouch M, Brock JR, Al-Shehbaz IA, Lysak MA (2019) Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering. Plant Cell  31: 2596–2612 PubMed PMC

Mandáková T, Hloušková P, Koch MA, Lysak MA (2020) Genome evolution in Arabideae was marked by frequent centromere repositioning. Plant Cell  32: 650–665 PubMed PMC

Mandrioli M, Manicardi GC (2020) Holocentric chromosomes. PLoS Genet  16: e1008918. PubMed PMC

Martins LC (1999) Did Sutton and Boveri propose the so-called Sutton-Boveri chromosome hypothesis?  Genetics Mol Biol  22:  261–272

Martinez-Garcia M, Schubert V, Osman K, Darbyshire A, Sanchez-Moran E, Franklin FCH (2018) TOPII and chromosome movement help remove interlocks between entangled chromosomes during meiosis. J Cell Biol  217: 4070–4079 PubMed PMC

Mather K, Stone LHA (1933) The effect of X-radiation upon somatic chromosomes. J Genet  28: 1–24

Matveevsky S, Kolomiets O, Bogdanov A, Alpeeva E, Bakloushinskaya I (2020) Meiotic chromosome contacts as a plausible prelude for Robertsonian translocations. Genes  11:  386 PubMed PMC

McClintock B (1932) Cyto-Genetics in 1932. J Hered  23: 497–498

McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci USA  25: 405–416 PubMed PMC

McClintock B (1941) The stability of broken ends of chromosomes in Zea Mays. Genetics  26: 234–282 PubMed PMC

McEwen BF, Ding Y, Heagle AB (1998) Relevance of kinetochore size and microtubule-binding capacity for stable chromosome attachment during mitosis in PtK1 cells. Chromosome Res  6: 123–132 PubMed

Muraki K, Murnane JP (2017) The DNA damage response at dysfunctional telomeres, and at interstitial and subtelomeric DNA double-strand breaks. Genes Genet Syst  92: 135–152 PubMed

Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res  20: 1545–1557 PubMed PMC

Nambiar M, Smith GR (2016) Repression of harmful meiotic recombination in centromeric regions. Seminars in Cell & Developmental Biology, Vol. 54. Academic Press, Cambridge, MA, pp 188–197 PubMed PMC

Oizumi Y, Kaji T, Tashiro S, Takeshita Y, Kanoh J (2021) Complete sequences of Schizosaccharomyces pombe subtelomeres reveal multiple patterns of genome variation. Nat Commun  12: 1–16 PubMed PMC

Oko Y, Ito N, Sakamoto T (2020) The mechanisms and significance of the positional control of centromeres and telomeres in plants. J Plant Res  133: 471–478 PubMed

Orel V (1971) A reconstruction of Mendel’s Pisum experiments and an attempt at an explanation of Mendel’s way of presentation. Folia Mendel  6: 41–60

Page SL, Shin JC, Han JY, Andy Choo KH, Shaffer LG (1996) Breakpoint diversity illustrates distinct mechanisms for Robertsonian translocation formation. Hum Mol Genet  5: 1279–1288 PubMed

Pennaneach V, Kolodner RD (2009) Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in  S. cerevisiae. PLoS One  4: e6389. PubMed PMC

Plačková K, Bureš P, Zedek F (2021) Centromere size scales with genome size across Eukaryotes. Sci Rep  11: 1–7 PubMed PMC

Pobiega S, Marcand S (2010) Dicentric breakage at telomere fusions. Genes Dev  24: 720–733 PubMed PMC

Pouokam M, Cruz B, Burgess S, Segal MR, Vazquez M, Arsuaga J (2019) The Rabl configuration limits topological entanglement of chromosomes in budding yeast. Sci Rep  9: 1–10 PubMed PMC

Rabl C (1885) Über Zelltheilung. Morphol Jahrbuch  10: 214–330

Richards DM, Greer E, Martin AC, Moore G, Shaw PJ, Howard M (2012) Quantitative dynamics of telomere bouquet formation. PLoS Comput Biol  8: e1002812. PubMed PMC

Riha K, McKnight TD, Griffing LR, Shippen DE (2001) Living with genome instability: plant responses to telomere dysfunction. Science  291: 1797–1800 PubMed

Robertson WR (1916) Chromosome studies: I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae: V-shaped chromosomes and their significance in Acrididae, Locustidae, and Gryllidae: chromosomes and variation. J Morphol  27: 179–331

Salse J (2016) Deciphering the evolutionary interplay between subgenomes following polyploidy: a paleogenomics approach in grasses. Am J Botany  103:  1167–1174 PubMed

Sánchez-Guillén RA, Capilla L, Reig-Viader R, Martínez-Plana M, Pardo-Camacho C, Andrés-Nieto M, Ventura J, Ruiz-Herrera A (2015) On the origin of Robertsonian fusions in nature: evidence of telomere shortening in wild house mice. J Evol Biol  28: 241–249 PubMed

Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, Vadnala RN, Sun S, Siddharthan R, Sanyal K, et al. (2020) Loss of centromere function drives karyotype evolution in closely related Malassezia species. Elife  9: e53944. PubMed PMC

Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S (2012) Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr Biol  22: 658–667 PubMed

Saunders VA, Houben A (2001) The pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome  44: 955–961 PubMed

Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol  2: 621–627 PubMed

Schneider KL, Xie Z, Wolfgruber TK, Presting GG (2016) Inbreeding drives maize centromere evolution. Proc Natl Acad Sci USA  113: E987–E996 PubMed PMC

Schotanus K, Yadav V, Heitman J (2021) Epigenetic dynamics of centromeres and neocentromeres in  Cryptococcus deuterogattii. PLoS Genet  17: e1009743. PubMed PMC

Schubert I (2021) Boon and bane of DNA double-strand breaks. Int J Mol Sci  22: 5171. PubMed PMC

Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trend Genet  27: 207–216 PubMed

Schubert I, Oud JL (1997) There is an upper limit of chromosome size for normal development of an organism. Cell  88: 515–520 PubMed

Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma  4: 535–550 PubMed

Sepsi A, Higgins JD, Heslop‐Harrison JS, Schwarzacher T (2017) CENH3 morphogenesis reveals dynamic centromere associations during synaptonemal complex formation and the progression through male meiosis in hexaploid wheat. Plant J  89: 235–249 PubMed

Sepsi A, Fábián A, Jäger K, Heslop-Harrison JS, Schwarzacher T (2018) ImmunoFISH: simultaneous visualisation of proteins and DNA sequences gives insight into meiotic processes in nuclei of grasses. Front Plant Sci  9: 1193. PubMed PMC

Shan W, Kubová M, Mandáková T, Lysak MA (2021) Nuclear organization in crucifer genomes: nucleolus‐associated telomere clustering is not a universal interphase configuration in Brassicaceae. Plant J  108: 528–540 PubMed

Sheehan MJ, Pawlowski WP (2009) Live imaging of rapid chromosome movements in meiotic prophase I in maize. Proc Natl Acad Sci USA  106: 20989–20994 PubMed PMC

Song X, Sun P, Yuan J, Gong K, Li N, Meng F, Zhang Z, Li X, Hu J, Wang X, et al. (2021) The celery genome sequence reveals sequential paleo‐polyploidizations, karyotype evolution and resistance gene reduction in Apiales. Plant Biotechnol J  19: 731–744 PubMed PMC

Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P, Gillespie LJ, Zuloaga FO (2017) A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J Syst Evol  55: 259–290

Stimpson KM, Song IY, Jauch A, Holtgreve-Grez H, Hayden KE, Bridger JM, Sullivan BA (2010) Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet  6: e1001061. PubMed PMC

Stimpson KM, Matheny JE, Sullivan BA (2012) Dicentric chromosomes: unique models to study centromere function and inactivation. Chromosome Res  20: 595–605 PubMed PMC

Stroik S, Hendrickson EA (2020) Telomere fusions and translocations: a bridge too far?  Curr Opin Genet Dev  60: 85–91 PubMed PMC

Sutton WS (1902) On the morphology of the chromosome group in Brachystola magna. Biol Bull  4: 24–39

Tiang CL, He Y, Pawlowski WP (2012) Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. Plant Physiol  158: 26–34 PubMed PMC

Tortora MM, Salari H, Jost D (2020) Chromosome dynamics during interphase: a biophysical perspective. Curr Opin Genet Dev  61: 37–43 PubMed

Upcott M (1937) Spontaneous chromosome changes in pollen grains. Nature  139: 153–153

Vara C, Paytuví-Gallart A, Cuartero Y, Álvarez-González L, Marín-Gual L, Garcia F, Ruiz-Herrera A, et al. (2021) The impact of chromosomal fusions on 3D genome folding and recombination in the germ line. Nat Commun  12: 1–17 PubMed PMC

Varas J, Graumann K, Osman K, Pradillo M, Evans DE, Santos JL, Armstrong SJ (2015) Absence of SUN 1 and SUN 2 proteins in Arabidopsis thaliana leads to a delay in meiotic progression and defects in synapsis and recombination. Plant J  81: 329–346 PubMed

Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, et al. (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet  42: 833–839 PubMed

Wang H, Bennetzen JL (2012) Centromere retention and loss during the descent of maize from a tetraploid ancestor. Proc Natl Acad Sci USA  109: 21004–21009 PubMed PMC

Wang CJR, Carlton PM, Golubovskaya IN, Cande WZ (2009) Interlock formation and coiling of meiotic chromosome axes during synapsis. Genetics  183: 905–915 PubMed PMC

Wang F, Singh R, Genovesi AD, Wai CM, Huang X, Chandra A, Yu Q (2015a) Sequence‐tagged high‐density genetic maps of Zoysia japonica provide insights into genome evolution in Chloridoideae. Plant J  82: 744–757 PubMed

Wang  N, Liu  J, Ricci  WA, Gent  JI, Dawe  RK (2021a) Maize centromeric chromatin scales with changes in genome size. Genetics  217: iyab020. PubMed PMC

Wang J, Zi H, Wang R, Liu J, Wang H, Chen R, Li L, Guo H, Chen J, Li J, Zong J (2021b) A high-quality chromosome-scale assembly of the centipedegrass [Eremochloa ophiuroides (Munro) Hack.] genome provides insights into chromosomal structural evolution and prostrate growth habit. Horticu Res  8: 201 PubMed PMC

Wang  K, Wu  Y, Zhang  W, Dawe  RK, Jiang  J (2014) Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res  24: 107–116 PubMed PMC

Wang L, Tu Z, Liu C, Liu H, Kaldis P, Chen Z, Li W (2018a) Dual roles of TRF1 in tethering telomeres to the nuclear envelope and protecting them from fusion during meiosis. Cell Death Differ  25: 1174–1188 PubMed PMC

Wang S, Xiao Y, Zhou ZW, Yuan J, Guo H, Yang Z, Wang X, Fan H, Chen LL, Luo J, et al. (2021c) High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height. Genome Biol  22: 1–25 PubMed PMC

Wang S, Zhai B, Yang X, Zhang L (2018b) Protect chromosomes from end-to-end fusion during meiotic bouquet. Sci China Life Sci  61: 736–738 PubMed

Wang X, Jin D, Wang Z, Guo H, Zhang L, Wang L, Li J, Paterson AH (2015b) Telomere‐centric genome repatterning determines recurring chromosome number reductions during the evolution of eukaryotes. New Phytologist  205: 378–389 PubMed

Wang Z, Wang J, Pan Y, Lei T, Ge W, Wang L, Zhang L, Li Y, Zhao K, Liu T, Song X, et al. (2019) Reconstruction of evolutionary trajectories of chromosomes unraveled independent genomic repatterning between Triticeae and Brachypodium. BMC Genom  20: 1–10 PubMed PMC

Waters PD, Patel HR, Ruiz-Herrera A, Álvarez-González L, Lister NC, Simakov O, Ezaz T, Kaur P, Frere C, Graves JAM, et al. (2021) Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc Natl Acad Sci USA  118: e2112494118. PubMed PMC

Yang L, Koo DH, Li D, Zhang T, Jiang J, Luan F, Renner SS, Henaff E, Sanseverino W, Garcia-Mas J, Casacuberta J (2014) Next‐generation sequencing, FISH mapping and synteny‐based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J  77: 16–30 PubMed

Yang W, Zhang L, Mandáková T, Huang L, Li T, Jiang J, Yang Y, Lysak MA, Liu J, Hu Q (2021) The chromosome‐level genome sequence and karyotypic evolution of Megadenia pygmaea (Brassicaceae). Mol Ecol Resource  21: 871–879 PubMed

Zhang F, Tang D, Shen Y, Xue Z, Shi W, Ren L, Cheng Z, et al. (2017) The F-box protein ZYGO1 mediates bouquet formation to promote homologous pairing, synapsis, and recombination in rice meiosis. Plant Cell  29: 2597–2609 PubMed PMC

Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Zeng P, Yue Z, Wang W, Wang J, et al. (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol  30: 549–554 PubMed

Zhang W, Friebe B, Gill BS, Jiang J (2010) Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma  119: 553–563 PubMed

Zhao Q, Meng Y, Wang P, Qin X, Cheng C, Zhou J, Yu X, Li J, Lou Q, Jahn M, Chen J (2021) Reconstruction of ancestral karyotype illuminates chromosome evolution in the genus Cucumis. Plant J  107: 1243–1259 PubMed

Zhou S, Jiang W, Zhao Y, Zhou DX (2019) Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes. Nat Plants  5: 795–800 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...