Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
35441689
PubMed Central
PMC9252491
DOI
10.1093/plcell/koac116
PII: 6571155
Knihovny.cz E-zdroje
- MeSH
- genomika MeSH
- karyotyp MeSH
- meióza MeSH
- molekulární evoluce * MeSH
- polyploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The evolution of eukaryotic genomes is accompanied by fluctuations in chromosome number, reflecting cycles of chromosome number increase (polyploidy and centric fissions) and decrease (chromosome fusions). Although all chromosome fusions result from DNA recombination between two or more nonhomologous chromosomes, several mechanisms of descending dysploidy are exploited by eukaryotes to reduce their chromosome number. Genome sequencing and comparative genomics have accelerated the identification of inter-genome chromosome collinearity and gross chromosomal rearrangements and have shown that end-to-end chromosome fusions (EEFs) and nested chromosome fusions (NCFs) may have played a more important role in the evolution of eukaryotic karyotypes than previously thought. The present review aims to summarize the limited knowledge on the origin, frequency, and evolutionary implications of EEF and NCF events in eukaryotes and especially in land plants. The interactions between nonhomologous chromosomes in interphase nuclei and chromosome (mis)pairing during meiosis are examined for their potential importance in the origin of EEFs and NCFs. The remaining open questions that need to be addressed are discussed.
Zobrazit více v PubMed
Adikusuma F, Williams N, Grutzner F, Hughes J, Thomas P (2017) Targeted deletion of an entire chromosome using CRISPR/Cas9. Mol Ther 25: 1736–1738 PubMed PMC
Agudo M, Abad JP, Molina I, Losada A, Ripoll P, Villasante A (2000) A dicentric chromosome of Drosophila melanogaster showing alternate centromere inactivation. Chromosoma 109: 190–196 PubMed
Aguilar M, Prieto P (2021) Telomeres and subtelomeres dynamics in the context of early chromosome interactions during meiosis and their implications in plant breeding. Front Plant Sci 12: 672489. PubMed PMC
Alleva B, Smolikove S (2017) Moving and stopping: regulation of chromosome movement to promote meiotic chromosome pairing and synapsis. Nucleus 8: 613–624 PubMed PMC
Armstrong SJ, Franklin FCH, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114: 4207–4217 PubMed
Arpòn J, Sakai K, Gaudin V, Andrey P (2021) Spatial modeling of biological patterns shows multiscale organization of Arabidopsis thaliana heterochromatin. Sci Rep 11: 1–17 PubMed PMC
Ashley T (1979) Specific end-to-end attachment of chromosomes in Ornithogalum virens. J Cell Sci 38: 357–367 PubMed
Barra V, Fachinetti D (2018) The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 9: 1–17 PubMed PMC
Bateson W (1906) The progress of genetic research. In Wilks W, ed, Report of the Third International Conference on Genetics. Spottiswoode & Co., London, pp 90–97
Belling J (1933) Critical notes on Darlington’s recent advances in cytology. Univ Cal Pubs Bot 17: 75–110
Betekhtin A, Jenkins G, Hasterok R (2014) Reconstructing the evolution of Brachypodium genomes using comparative chromosome painting. PLoS One 9: e115108. PubMed PMC
Birchler JA, Han F (2018) Barbara McClintock’s unsolved chromosomal mysteries: parallels to common rearrangements and karyotype evolution. Plant Cell 30: 771–779 PubMed PMC
Campbell A (1993) Barbara McClintock. Ann Rev Genet 27: 1–32 PubMed
Carlton PM, Cowan CR, Cande WZ (2003) Directed motion of telomeres in the formation of the meiotic bouquet revealed by time course and simulation analysis. Mol Biol Cell 14: 2832–2843 PubMed PMC
Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25: 1541–1554 PubMed PMC
Cheng Y, Shang D, Luo M, Huang C, Lai F, Wang X, Zhao Y, Zhang L, Long M, Zhou R, et al. (2020) Whole genome-wide chromosome fusion and new gene birth in the Monopterus albus genome. Cell Biosci 10: 1–14 PubMed PMC
Chiatante G, Giannuzzi G, Calabrese FM, Eichler EE, Ventura M (2017) Centromere destiny in dicentric chromosomes: new insights from the evolution of human chromosome 2 ancestral centromeric region. Mol Biol Evol 34: 1669–1681 PubMed PMC
Cicconardi F, Lewis JJ, Martin SH, Reed RD, Danko CG, Montgomery SH (2021) Chromosome fusion affects genetic diversity and evolutionary turnover of functional loci but consistently depends on chromosome size. Mol Biol Evol 38: 4449–4462 PubMed PMC
Comfort N (2001) The Tangled Field: Barbara McClintock’s Search for the Patterns of Genetic Control. Harvard University, Cambridge
Creighton HB, McClintock B (1931) A correlation of cytological and genetical crossing-over in zea mays. Proc Natl Acad Sci USA 17: 492–497 PubMed PMC
Cremer T, Cremer C (1988) Centennial of Wilhelm Waldeyer's introduction of the term “chromosome” in 1888. Cytogenet Cell Genet 48: 66–67 PubMed
Cremer T, Cremer C (2006) Rise, fall and resurrection of ch0romosome territories: a historical perspective Part I. The rise of chromosome territories. Eur J Histochem 50: 161–176 PubMed
Darlington CD (1932) Recent Advances in Cytology, Churchill. P. Blakiston’s Son and Co., Philadelphia, PA
Darlington CD, Upcott MB (1941) Spontaneous chromosome change. J Genet 41: 297–338
Dawicki-McKenna JM, Black BE (2019) Chromosomes: keeping centromeric chromatin tidy through S phase. Curr Biol 29: R35–R37 PubMed
Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6: 551–558 PubMed
Edelson E (2001) Gregor Mendel: And the Roots of Genetics. Oxford University Press, Oxford
Fang T, Dong H, Yu S, Moss JQ, Fontanier CH, Martin DL, Fu J, Wu Y (2020) Sequence-based genetic mapping of Cynodon dactylon Pers. reveals new insights into genome evolution in poaceae. Commun Biol 3: 1–10 PubMed PMC
Fernandez J, Bloomer H, Kellam N, LaRocque JR (2019) Chromosome preference during homologous recombination Repair of DNA double-strand breaks in Drosophila melanogaster. G3: Genes Genom Genet 9: 3773–3780 PubMed PMC
Fonsêca A, Ferraz ME, Pedrosa-Harand A (2016) Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy. Chromosoma 125: 413–421 PubMed
Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci 99: 14584–14589 PubMed PMC
Fu S, Gao Z, Birchler J, Han F (2012) Dicentric chromosome formation and epigenetics of centromere formation in plants. J Genet Genomics 39: 125–130 PubMed
Gao Z, Fu S, Dong Q, Han F, Birchler JA (2011) Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res 19: 755–761 PubMed
Geiser C, Mandáková T, Arrigo N, Lysak MA, Parisod C (2016) Repeated whole-genome duplication, karyotype reshuffling, and biased retention of stress-responding genes in Buckler mustard. Plant Cell 28: 17–27 PubMed PMC
Gordon JL, Byrne KP, Wolfe KH (2011) Mechanisms of chromosome number evolution in yeast. PLoS Genet 7: e1002190. PubMed PMC
Guerra M (2016) Agmatoploidy and symploidy: a critical review. Genet Mol Biol 39: 492–496 PubMed PMC
Guerrero RF, Kirkpatrick M (2014) Local adaptation and the evolution of chromosome fusions. Evolution 68: 2747–2756 PubMed
Guo X, Mandáková T, Trachtová K, Özüdoğru B, Liu J, Lysak MA (2021) Linked by ancestral bonds: multiple whole-genome duplications and reticulate evolution in a Brassicaceae tribe. Mol Biol Evol 38: 1695–1714 PubMed PMC
Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103: 3238–3243 PubMed PMC
Han Y, Zhang Z, Liu C, Liu J, Huang S, Jiang J, Jin W (2009) Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Natl Acad Sci USA 106: 14937–14941 PubMed PMC
Harman OS (2003) Darlington and the ‘invention’of the chromosome. Endeavour 27: 69–74 PubMed
Harman OS (2004) The Man who Invented the Chromosome: a Life of Cyril Darlington. Harvard University Press, CA, MA, USA
Harman OS (2006) Method as a function of “Disciplinary Landscape”: C.D. Darlington and cytology, genetics and evolution, 1932–1950. J History Biol 39: 165–197 PubMed
Heuser E (1884) Beobachtungen über Zellkerntheilung. Botanisches Zentralblatt 17: 2711
Hill J, Rastas P, Hornett EA, Neethiraj R, Clark N, Morehouse N, de la Paz Celorio-Mancera M, Cols JC, Dircksen H, Wheat CW, et al. (2019) Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Sci Adv 5: eaau3648. PubMed PMC
Hoang PT, Schubert I (2017) Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Chromosoma 126: 729–739 PubMed
Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Guo YL, et al. (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43: 476–481 PubMed PMC
Hu Q, Ma Y, Mandáková T, Shi S, Chen C, Sun P, Zhang L, Feng L, Zheng Y, Feng X, Yang W, et al. (2021) Genome evolution of the psammophyte Pugionium for desert adaptation and further speciation. Proc Natl Acad Sci USA 118: e2025711118 PubMed PMC
Hurel A, Phillips D, Vrielynck N, Mézard C, Grelon M, Christophorou N (2018) A cytological approach to studying meiotic recombination and chromosome dynamics in Arabidopsis thaliana male meiocytes in three dimensions. Plant J 95: 385–396 PubMed
Ijdo JW, Baldini A, Ward DC, Reeders ST, Wells RA (1991) Origin of human chromosome 2: an ancestral telomere-telomere fusion. Proc Natl Acad Sci USA 88: 9051–9055 PubMed PMC
Iltis H (2018) Life of Mendel. Routledge, Abingdon
Imai HT (1986) Modes of species differentiation and karyotype alteration in ants and mammals. In Iwatsuki K, Raven PH, Bock WJ, eds, Modern Aspect of Species. University of Tokyo Press, Tokyo, Japan, pp 87–105
Imai HT, Taylor RW (1989) Chromosomal polymorphisms involving telomere fusion, centromeric inactivation and centromere shift in the ant Myrmecia (pilosula) n = 1. Chromosoma 98: 456–460
Imai HT, Satta Y, Takahata N (2001) Integrative study on chromosome evolution of mammals, ants and wasps based on the minimum interaction theory. J Theor Biol 210: 475–497 PubMed
International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763–768 PubMed
Jenkins G, Bennett MD (1981) The intranuclear relationship between centromere volume and chromosome size in Festuca scariosa × drymeja. J Cell Sci 47: 117–125 PubMed
Joachimiak A (1987) Telomere arrangement in interphase nuclei of Allium cepa L. Acta Biol Cracov Ser Bot 29: 64–70
Karimi-Ashtiyani R, Schubert V, Houben A (2021) Only the rye derived part of the 1BL/1RS hybrid centromere incorporates CENH3 of wheat. Front Plant Sci 12: 802222. PubMed PMC
Keller EF (1983) A Feeling for the Organism: The Life and Work of Barbara McClintock. W.H. Freeman and Company, New York, NY
Kim E, Kim J, Kim C, Lee J (2021) Long-read sequencing and de novo genome assemblies reveal complex chromosome end structures caused by telomere dysfunction at the single nucleotide level. Nucleic Acids Res 49: 338–3353 PubMed PMC
Koo DH, Han F, Birchler JA, Jiang J (2011) Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Res 21: 908–914 PubMed PMC
Kotseruba V, Pistrick K, Gernand D, Meister A, Ghukasyan A, Gabrielyan I, Houben A (2005) Characterisation of the low-chromosome number grass Colpodium versicolor (Stev.) Schmalh.(2n = 4) by molecular cytogenetics. Caryologia 58: 241–245
Lee JJ, Lee J, Lee H (2021) Alternative paths to telomere elongation. Semin Cell Dev Biol 113: 88–96 PubMed
Lewis D (1983) Cyril Dean Darlington 1903–1981. Biographical Memoirs of the Royal Society, Vol. 29. Royal Society, London
Li G, Wang L, Yang J, He H, Jin H, Li X, Han X, Zhao X, Dong L, Wang D, et al. (2021a) A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet 53: 574–584 PubMed PMC
Li X, Chengsong Z, Zhongwei L, Yun W, Dabao Z, Guihua B, Weixing S, Ma J, Muehlbauer GJ, Scanlon MJ, Jianming Y, et al. (2011) Chromosome size in diploid eukaryotic species centers on the average length with a conserved boundary. Mol Biol Evol 28: 1901–1911 PubMed PMC
Li Y, Sun P, Lu Z, Chen J, Wang Z, Du X, Zheng Z, Wu Y, Hu H, Yang J, Ma J (2021b) The Corylus mandshurica genome provides insights into the evolution of Betulaceae genomes and hazelnut breeding. Hortic Res 8: 54. PubMed PMC
Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437: 94–100 PubMed PMC
Lipshitz HD (2021) The origin of GENETICS. Genetics 217: iyaa024 PubMed PMC
Liu Y, Su H, Zhang J, Shi L, Liu Y, Zhang B, Bai H, Liang S, Gao Z, Han F, et al. (2020) Rapid birth or death of centromeres on fragmented chromosomes in maize. Plant Cell 32: 3113–3123 PubMed PMC
Liu Z, Roesti M, Marques D, Hiltbrunner M, Saladin V, Peichel CL (2022) Chromosomal fusions facilitate adaptation to divergent environments in threespine stickleback. Mol Biol Evol 39: msab358. PubMed PMC
Lottersberger F, Karssemeijer RA, Dimitrova N, de Lange T (2015) 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell 163: 880–893 PubMed PMC
Louis EJ, Vershinin AV (2005) Chromosome ends: different sequences may provide conserved functions. Bioessays 27: 685–697 PubMed
Luo J, Sun X, Cormack BP, Boeke JD (2018) Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast. Nature 560: 392–396 PubMed PMC
Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Dvorak J, et al. (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA 106: 15780–15785 PubMed PMC
Luo MC, Gu YQ, Puiu D, Wang H, Wardziok SO, Deal KR, Huo N, Zhu T, Wang L, Dvořák J (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551: 498–502 PubMed PMC
Lusinska J, Betekhtin A, Lopez-Alvarez D, Catalan P, Jenkins G, Wolny E, Hasterok R (2019) Comparatively barcoded chromosomes of Brachypodium perennials tell the story of their karyotype structure and evolution. Int J Mol Sci 20: 5557 PubMed PMC
Lysak MA (2014) Live and let die: centromere loss during evolution of plant chromosomes. New Phytologist 203: 1082–1089
Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103: 5224–5229 PubMed PMC
Ma J, Bennetzen JL (2006) Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci USA 103: 383–388 PubMed PMC
Ma PF, Liu YL, Jin GH, Liu JX, Wu H, He J, Guo ZH, Li DZ (2021) The Pharus latifolius genome bridges the gap of early grass evolution. Plant Cell 33: 846–864 PubMed PMC
MacKinnon RN, Campbell LJ (2011) The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy. Genet Res Int 2011: 643628. PubMed PMC
Mandáková T, Lysak MA (2018) Post-polyploid diploidization and diversification through dysploid changes. Curr Opin Plant Biol 42: 55–65 PubMed
Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA (2010a) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22: 2277–2290 PubMed PMC
Mandáková T, Heenan PB, Lysak MA (2010b) Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evol Biol 10: 1–14 PubMed PMC
Mandáková T, Kovařík A, Zozomová-Lihová J, Shimizu-Inatsugi R, Shimizu KK, Mummenhoff K, Marhold K, Lysak MA (2013) The more the merrier: recent hybridization and polyploidy in Cardamine. Plant Cell 25: 3280–3295 PubMed PMC
Mandáková T, Schranz ME, Sharbel TF, de Jong H, Lysak MA (2015) Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes. Plant J 82: 785–793 PubMed
Mandáková T, Gloss AD, Whiteman NK, Lysak MA (2016) How diploidization turned a tetraploid into a pseudotriploid. Am J Bot 103: 1187–1196 PubMed
Mandáková T, Hloušková P, German D, Lysak MA (2017a) Monophyletic origin and evolution of the largest crucifer genomes. Plant Physiol 174: 2062–2071 PubMed PMC
Mandáková T, Pouch M, Harmanová K, Zhan SH, Mayrose I, Lysak MA (2017b) Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol Ecol 26: 6445–6462 PubMed
Mandáková T, Guo X, Özüdoğru B, Mummenhoff K, Lysak MA (2018) Hybridization‐facilitated genome merger and repeated chromosome fusion after 8 million years. Plant J 96: 748–760 PubMed
Mandáková T, Pouch M, Brock JR, Al-Shehbaz IA, Lysak MA (2019) Origin and evolution of diploid and allopolyploid Camelina genomes were accompanied by chromosome shattering. Plant Cell 31: 2596–2612 PubMed PMC
Mandáková T, Hloušková P, Koch MA, Lysak MA (2020) Genome evolution in Arabideae was marked by frequent centromere repositioning. Plant Cell 32: 650–665 PubMed PMC
Mandrioli M, Manicardi GC (2020) Holocentric chromosomes. PLoS Genet 16: e1008918. PubMed PMC
Martins LC (1999) Did Sutton and Boveri propose the so-called Sutton-Boveri chromosome hypothesis? Genetics Mol Biol 22: 261–272
Martinez-Garcia M, Schubert V, Osman K, Darbyshire A, Sanchez-Moran E, Franklin FCH (2018) TOPII and chromosome movement help remove interlocks between entangled chromosomes during meiosis. J Cell Biol 217: 4070–4079 PubMed PMC
Mather K, Stone LHA (1933) The effect of X-radiation upon somatic chromosomes. J Genet 28: 1–24
Matveevsky S, Kolomiets O, Bogdanov A, Alpeeva E, Bakloushinskaya I (2020) Meiotic chromosome contacts as a plausible prelude for Robertsonian translocations. Genes 11: 386 PubMed PMC
McClintock B (1932) Cyto-Genetics in 1932. J Hered 23: 497–498
McClintock B (1939) The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci USA 25: 405–416 PubMed PMC
McClintock B (1941) The stability of broken ends of chromosomes in Zea Mays. Genetics 26: 234–282 PubMed PMC
McEwen BF, Ding Y, Heagle AB (1998) Relevance of kinetochore size and microtubule-binding capacity for stable chromosome attachment during mitosis in PtK1 cells. Chromosome Res 6: 123–132 PubMed
Muraki K, Murnane JP (2017) The DNA damage response at dysfunctional telomeres, and at interstitial and subtelomeric DNA double-strand breaks. Genes Genet Syst 92: 135–152 PubMed
Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20: 1545–1557 PubMed PMC
Nambiar M, Smith GR (2016) Repression of harmful meiotic recombination in centromeric regions. Seminars in Cell & Developmental Biology, Vol. 54. Academic Press, Cambridge, MA, pp 188–197 PubMed PMC
Oizumi Y, Kaji T, Tashiro S, Takeshita Y, Kanoh J (2021) Complete sequences of Schizosaccharomyces pombe subtelomeres reveal multiple patterns of genome variation. Nat Commun 12: 1–16 PubMed PMC
Oko Y, Ito N, Sakamoto T (2020) The mechanisms and significance of the positional control of centromeres and telomeres in plants. J Plant Res 133: 471–478 PubMed
Orel V (1971) A reconstruction of Mendel’s Pisum experiments and an attempt at an explanation of Mendel’s way of presentation. Folia Mendel 6: 41–60
Page SL, Shin JC, Han JY, Andy Choo KH, Shaffer LG (1996) Breakpoint diversity illustrates distinct mechanisms for Robertsonian translocation formation. Hum Mol Genet 5: 1279–1288 PubMed
Pennaneach V, Kolodner RD (2009) Stabilization of dicentric translocations through secondary rearrangements mediated by multiple mechanisms in S. cerevisiae. PLoS One 4: e6389. PubMed PMC
Plačková K, Bureš P, Zedek F (2021) Centromere size scales with genome size across Eukaryotes. Sci Rep 11: 1–7 PubMed PMC
Pobiega S, Marcand S (2010) Dicentric breakage at telomere fusions. Genes Dev 24: 720–733 PubMed PMC
Pouokam M, Cruz B, Burgess S, Segal MR, Vazquez M, Arsuaga J (2019) The Rabl configuration limits topological entanglement of chromosomes in budding yeast. Sci Rep 9: 1–10 PubMed PMC
Rabl C (1885) Über Zelltheilung. Morphol Jahrbuch 10: 214–330
Richards DM, Greer E, Martin AC, Moore G, Shaw PJ, Howard M (2012) Quantitative dynamics of telomere bouquet formation. PLoS Comput Biol 8: e1002812. PubMed PMC
Riha K, McKnight TD, Griffing LR, Shippen DE (2001) Living with genome instability: plant responses to telomere dysfunction. Science 291: 1797–1800 PubMed
Robertson WR (1916) Chromosome studies: I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae: V-shaped chromosomes and their significance in Acrididae, Locustidae, and Gryllidae: chromosomes and variation. J Morphol 27: 179–331
Salse J (2016) Deciphering the evolutionary interplay between subgenomes following polyploidy: a paleogenomics approach in grasses. Am J Botany 103: 1167–1174 PubMed
Sánchez-Guillén RA, Capilla L, Reig-Viader R, Martínez-Plana M, Pardo-Camacho C, Andrés-Nieto M, Ventura J, Ruiz-Herrera A (2015) On the origin of Robertsonian fusions in nature: evidence of telomere shortening in wild house mice. J Evol Biol 28: 241–249 PubMed
Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, Vadnala RN, Sun S, Siddharthan R, Sanyal K, et al. (2020) Loss of centromere function drives karyotype evolution in closely related Malassezia species. Elife 9: e53944. PubMed PMC
Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S (2012) Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr Biol 22: 658–667 PubMed
Saunders VA, Houben A (2001) The pericentromeric heterochromatin of the grass Zingeria biebersteiniana (2n = 4) is composed of Zbcen1-type tandem repeats that are intermingled with accumulated dispersedly organized sequences. Genome 44: 955–961 PubMed
Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol 2: 621–627 PubMed
Schneider KL, Xie Z, Wolfgruber TK, Presting GG (2016) Inbreeding drives maize centromere evolution. Proc Natl Acad Sci USA 113: E987–E996 PubMed PMC
Schotanus K, Yadav V, Heitman J (2021) Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii. PLoS Genet 17: e1009743. PubMed PMC
Schubert I (2021) Boon and bane of DNA double-strand breaks. Int J Mol Sci 22: 5171. PubMed PMC
Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trend Genet 27: 207–216 PubMed
Schubert I, Oud JL (1997) There is an upper limit of chromosome size for normal development of an organism. Cell 88: 515–520 PubMed
Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma 4: 535–550 PubMed
Sepsi A, Higgins JD, Heslop‐Harrison JS, Schwarzacher T (2017) CENH3 morphogenesis reveals dynamic centromere associations during synaptonemal complex formation and the progression through male meiosis in hexaploid wheat. Plant J 89: 235–249 PubMed
Sepsi A, Fábián A, Jäger K, Heslop-Harrison JS, Schwarzacher T (2018) ImmunoFISH: simultaneous visualisation of proteins and DNA sequences gives insight into meiotic processes in nuclei of grasses. Front Plant Sci 9: 1193. PubMed PMC
Shan W, Kubová M, Mandáková T, Lysak MA (2021) Nuclear organization in crucifer genomes: nucleolus‐associated telomere clustering is not a universal interphase configuration in Brassicaceae. Plant J 108: 528–540 PubMed
Sheehan MJ, Pawlowski WP (2009) Live imaging of rapid chromosome movements in meiotic prophase I in maize. Proc Natl Acad Sci USA 106: 20989–20994 PubMed PMC
Song X, Sun P, Yuan J, Gong K, Li N, Meng F, Zhang Z, Li X, Hu J, Wang X, et al. (2021) The celery genome sequence reveals sequential paleo‐polyploidizations, karyotype evolution and resistance gene reduction in Apiales. Plant Biotechnol J 19: 731–744 PubMed PMC
Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P, Gillespie LJ, Zuloaga FO (2017) A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J Syst Evol 55: 259–290
Stimpson KM, Song IY, Jauch A, Holtgreve-Grez H, Hayden KE, Bridger JM, Sullivan BA (2010) Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet 6: e1001061. PubMed PMC
Stimpson KM, Matheny JE, Sullivan BA (2012) Dicentric chromosomes: unique models to study centromere function and inactivation. Chromosome Res 20: 595–605 PubMed PMC
Stroik S, Hendrickson EA (2020) Telomere fusions and translocations: a bridge too far? Curr Opin Genet Dev 60: 85–91 PubMed PMC
Sutton WS (1902) On the morphology of the chromosome group in Brachystola magna. Biol Bull 4: 24–39
Tiang CL, He Y, Pawlowski WP (2012) Chromosome organization and dynamics during interphase, mitosis, and meiosis in plants. Plant Physiol 158: 26–34 PubMed PMC
Tortora MM, Salari H, Jost D (2020) Chromosome dynamics during interphase: a biophysical perspective. Curr Opin Genet Dev 61: 37–43 PubMed
Upcott M (1937) Spontaneous chromosome changes in pollen grains. Nature 139: 153–153
Vara C, Paytuví-Gallart A, Cuartero Y, Álvarez-González L, Marín-Gual L, Garcia F, Ruiz-Herrera A, et al. (2021) The impact of chromosomal fusions on 3D genome folding and recombination in the germ line. Nat Commun 12: 1–17 PubMed PMC
Varas J, Graumann K, Osman K, Pradillo M, Evans DE, Santos JL, Armstrong SJ (2015) Absence of SUN 1 and SUN 2 proteins in Arabidopsis thaliana leads to a delay in meiotic progression and defects in synapsis and recombination. Plant J 81: 329–346 PubMed
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, et al. (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42: 833–839 PubMed
Wang H, Bennetzen JL (2012) Centromere retention and loss during the descent of maize from a tetraploid ancestor. Proc Natl Acad Sci USA 109: 21004–21009 PubMed PMC
Wang CJR, Carlton PM, Golubovskaya IN, Cande WZ (2009) Interlock formation and coiling of meiotic chromosome axes during synapsis. Genetics 183: 905–915 PubMed PMC
Wang F, Singh R, Genovesi AD, Wai CM, Huang X, Chandra A, Yu Q (2015a) Sequence‐tagged high‐density genetic maps of Zoysia japonica provide insights into genome evolution in Chloridoideae. Plant J 82: 744–757 PubMed
Wang N, Liu J, Ricci WA, Gent JI, Dawe RK (2021a) Maize centromeric chromatin scales with changes in genome size. Genetics 217: iyab020. PubMed PMC
Wang J, Zi H, Wang R, Liu J, Wang H, Chen R, Li L, Guo H, Chen J, Li J, Zong J (2021b) A high-quality chromosome-scale assembly of the centipedegrass [Eremochloa ophiuroides (Munro) Hack.] genome provides insights into chromosomal structural evolution and prostrate growth habit. Horticu Res 8: 201 PubMed PMC
Wang K, Wu Y, Zhang W, Dawe RK, Jiang J (2014) Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res 24: 107–116 PubMed PMC
Wang L, Tu Z, Liu C, Liu H, Kaldis P, Chen Z, Li W (2018a) Dual roles of TRF1 in tethering telomeres to the nuclear envelope and protecting them from fusion during meiosis. Cell Death Differ 25: 1174–1188 PubMed PMC
Wang S, Xiao Y, Zhou ZW, Yuan J, Guo H, Yang Z, Wang X, Fan H, Chen LL, Luo J, et al. (2021c) High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height. Genome Biol 22: 1–25 PubMed PMC
Wang S, Zhai B, Yang X, Zhang L (2018b) Protect chromosomes from end-to-end fusion during meiotic bouquet. Sci China Life Sci 61: 736–738 PubMed
Wang X, Jin D, Wang Z, Guo H, Zhang L, Wang L, Li J, Paterson AH (2015b) Telomere‐centric genome repatterning determines recurring chromosome number reductions during the evolution of eukaryotes. New Phytologist 205: 378–389 PubMed
Wang Z, Wang J, Pan Y, Lei T, Ge W, Wang L, Zhang L, Li Y, Zhao K, Liu T, Song X, et al. (2019) Reconstruction of evolutionary trajectories of chromosomes unraveled independent genomic repatterning between Triticeae and Brachypodium. BMC Genom 20: 1–10 PubMed PMC
Waters PD, Patel HR, Ruiz-Herrera A, Álvarez-González L, Lister NC, Simakov O, Ezaz T, Kaur P, Frere C, Graves JAM, et al. (2021) Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc Natl Acad Sci USA 118: e2112494118. PubMed PMC
Yang L, Koo DH, Li D, Zhang T, Jiang J, Luan F, Renner SS, Henaff E, Sanseverino W, Garcia-Mas J, Casacuberta J (2014) Next‐generation sequencing, FISH mapping and synteny‐based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J 77: 16–30 PubMed
Yang W, Zhang L, Mandáková T, Huang L, Li T, Jiang J, Yang Y, Lysak MA, Liu J, Hu Q (2021) The chromosome‐level genome sequence and karyotypic evolution of Megadenia pygmaea (Brassicaceae). Mol Ecol Resource 21: 871–879 PubMed
Zhang F, Tang D, Shen Y, Xue Z, Shi W, Ren L, Cheng Z, et al. (2017) The F-box protein ZYGO1 mediates bouquet formation to promote homologous pairing, synapsis, and recombination in rice meiosis. Plant Cell 29: 2597–2609 PubMed PMC
Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Zeng P, Yue Z, Wang W, Wang J, et al. (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30: 549–554 PubMed
Zhang W, Friebe B, Gill BS, Jiang J (2010) Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma 119: 553–563 PubMed
Zhao Q, Meng Y, Wang P, Qin X, Cheng C, Zhou J, Yu X, Li J, Lou Q, Jahn M, Chen J (2021) Reconstruction of ancestral karyotype illuminates chromosome evolution in the genus Cucumis. Plant J 107: 1243–1259 PubMed
Zhou S, Jiang W, Zhao Y, Zhou DX (2019) Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes. Nat Plants 5: 795–800 PubMed
Centromere drive may propel the evolution of chromosome and genome size in plants