Hybridization-facilitated genome merger and repeated chromosome fusion after 8 million years

. 2018 Nov ; 96 (4) : 748-760. [epub] 20180926

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30101476

The small genus Ricotia (nine species, Brassicaceae) is confined to the eastern Mediterranean. By comparative chromosome painting and a dated multi-gene chloroplast phylogeny, we reconstructed the origin and subsequent evolution of Ricotia. The ancestral Ricotia genome originated through hybridization between two older genomes with n = 7 and n = 8 chromosomes, respectively, on the Turkish mainland during the Early Miocene (c. 17.8 million years ago, Ma). Since then, the allotetraploid (n = 15) genome has been altered by two independent descending dysploidies (DD) to n = 14 in Ricotia aucheri and the Tenuifolia clade (2 spp.). By the Late Miocene (c. 10 Ma), the latter clade started to evolve in the most diverse Ricotia core clade (6 spp.), the process preceded by a DD event to n = 13. It is noteworthy that this dysploidy was mediated by a unique chromosomal rearrangement, merging together the same two chromosomes as were merged during the origin of a fusion chromosome within the paternal n = 7 genome c. 20 Ma. This shows that within a time period of c. 8 Myr genome evolution can repeat itself and that structurally very similar chromosomes may originate repeatedly from the same ancestral chromosomes by different pathways (end-to-end translocation versus nested chromosome insertion).

Citace poskytuje Crossref.org

Zobrazit více v PubMed

GENBANK
MH359178, MH359188

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...