Genome evolution of the psammophyte Pugionium for desert adaptation and further speciation
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34649989
PubMed Central
PMC8545485
DOI
10.1073/pnas.2025711118
PII: 2025711118
Knihovny.cz E-zdroje
- Klíčová slova
- chromosomal structural variation, desert plants, microhabitat divergence, polyploidization,
- MeSH
- Brassicaceae klasifikace genetika fyziologie MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- fyziologická adaptace genetika MeSH
- genom rostlinný * MeSH
- polyploidie MeSH
- vznik druhů (genetika) * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Deserts exert strong selection pressures on plants, but the underlying genomic drivers of ecological adaptation and subsequent speciation remain largely unknown. Here, we generated de novo genome assemblies and conducted population genomic analyses of the psammophytic genus Pugionium (Brassicaceae). Our results indicated that this bispecific genus had undergone an allopolyploid event, and the two parental genomes were derived from two ancestral lineages with different chromosome numbers and structures. The postpolyploid expansion of gene families related to abiotic stress responses and lignin biosynthesis facilitated environmental adaptations of the genus to desert habitats. Population genomic analyses of both species further revealed their recent divergence with continuous gene flow, and the most divergent regions were found to be centered on three highly structurally reshuffled chromosomes. Genes under selection in these regions, which were mainly located in one of the two subgenomes, contributed greatly to the interspecific divergence in microhabitat adaptation.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Institute of Evolution University of Haifa Mount Carmel Haifa 3498838 Israel
Zobrazit více v PubMed
Dassanayake M., et al. ., The genome of the extremophile crucifer Thellungiella parvula. Nat. Genet. 43, 913–918 (2011). PubMed PMC
Boyer J. S., Plant productivity and environment. Science 218, 443–448 (1982). PubMed
Anderson J. T., Willis J. H., Mitchell-Olds T., Evolutionary genetics of plant adaptation. Trends Genet. 27, 258–266 (2011). PubMed PMC
Turner T. L., Bourne E. C., Von Wettberg E. J., Hu T. T., Nuzhdin S. V., Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat. Genet. 42, 260–263 (2010). PubMed
Li L. F., Li Y. L., Jia Y., Caicedo A. L., Olsen K. M., Signatures of adaptation in the weedy rice genome. Nat. Genet. 49, 811–814 (2017). PubMed
Jiao Y., et al. ., Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011). PubMed
Soltis P. S., Soltis D. E., Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159–165 (2016). PubMed
Marburger S., et al. ., Interspecific introgression mediates adaptation to whole genome duplication. Nat. Commun. 10, 5218 (2019). PubMed PMC
Wu S., Han B., Jiao Y., Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Mol. Plant 13, 59–71 (2020). PubMed
Beilstein M. A., et al. ., Evolution of the telomere-associated protein POT1a in Arabidopsis thaliana is characterized by positive selection to reinforce protein–protein interaction. Mol. Biol. Evol. 32, 1329–1341 (2015). PubMed PMC
Stebbins G. L. Jr., Types of polyploids; their classification and significance. Adv. Genet. 1, 403–429 (1947). PubMed
Barker M. S., Arrigo N., Baniaga A. E., Li Z., Levin D. A., On the relative abundance of autopolyploids and allopolyploids. New Phytol. 210, 391–398 (2016). PubMed
Estep M. C., et al. ., Allopolyploidy, diversification, and the Miocene grassland expansion. Proc. Natl. Acad. Sci. U.S.A. 111, 15149–15154 (2014). PubMed PMC
Taylor S. A., Larson E. L., Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019). PubMed
Ding M., Chen Z. J., Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Curr. Opin. Plant Biol. 42, 37–48 (2018). PubMed PMC
Huang G., et al. ., Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat. Genet. 52, 516–524 (2020). PubMed PMC
Marcussen T., et al. ., Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092 (2014). PubMed
Chalhoub B., et al. ., Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953 (2014). PubMed
del Pozo J. C., Ramirez-Parra E., Whole genome duplications in plants: an overview from Arabidopsis. J. Exp. Bot. 66, 6991–7003 (2015). PubMed
Yang X., Desert research in northwestern China–A brief review. Géomorphologie Reli. Process. Environ. 4, 275–284 (2006).
Guo Z. T., et al. ., A major reorganization of Asian climate by the early Miocene. Clim. Past 4, 153–174 (2008).
Guo Z. T., et al. ., Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002). PubMed
Yu Q., Wang Q., Wang A., Wu G., Liu J., Interspecific delimitation and phylogenetic origin of Pugionium (Brassicaceae). J. Syst. Evol. 48, 195–206 (2010).
Nikolov L. A., et al. ., Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. New Phytol. 222, 1638–1651 (2019). PubMed
Al-Shehbaz I. A., Beilstein M. A., Kellogg E. A., Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview. Plant Syst. Evol. 259, 89–120 (2006).
Schmidt R., Bancroft I., Eds., Genetics and Genomics of the Brassicaceae (Springer, 2011).
Mandáková T., Lysak M. A., Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae). Plant Cell 20, 2559–2570 (2008). PubMed PMC
Kagale S., et al. ., Polyploid evolution of the Brassicaceae during the Cenozoic era. Plant Cell 26, 2777–2791 (2014). PubMed PMC
Geiser C., Mandáková T., Arrigo N., Lysak M. A., Parisod C., Repeated whole-genome duplication, karyotype reshuffling, and biased retention of stress-responding genes in Buckler mustard. Plant Cell 28, 17–27 (2016). PubMed PMC
Guo X., et al. ., Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics 18, 176 (2017). PubMed PMC
Wang Q., Abbott R. J., Yu Q. , Lin K., Liu J. , Pleistocene climate change and the origin of two desert plant species, Pugionium cornutum and Pugionium dolabratum (Brassicaceae), in northwest China. New Phytol. 199, 277–287 (2013). PubMed
Huang C. , et al. ., Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol. Biol. Evol. 33, 394–412 (2016). PubMed PMC
Kiefer C., et al. ., Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. Nat. Plants 5, 846–855 (2019). PubMed
DiVittorio C. T., et al. ., Natural selection maintains species despite frequent hybridization in the desert shrub Encelia. Proc. Natl. Acad. Sci. U.S.A. 117, 33373–33383 (2020). PubMed PMC
He L., et al. ., A molecular framework underlying the compound leaf pattern of Medicago truncatula. Nat. Plants 6, 511–521 (2020). PubMed
Machida C., Nakagawa A., Kojima S., Takahashi H., Machida Y., The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. Wiley Interdiscip. Rev. Dev. Biol. 4, 655–671 (2015). PubMed PMC
Nishiyama R., et al. ., Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc. Natl. Acad. Sci. U.S.A. 110, 4840–4845 (2013). PubMed PMC
Tran L. S., et al. ., Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104, 20623–20628 (2007). PubMed PMC
Nishimura C., et al. ., Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16, 1365–1377 (2004). PubMed PMC
Mandáková T., Guo X., Özüdoğru B., Mummenhoff K., Lysak M. A., Hybridization-facilitated genome merger and repeated chromosome fusion after 8 million years. Plant J. 96, 748–760 (2018). PubMed
Guo X., et al. ., Linked by ancestral bonds: Multiple whole-genome duplications and reticulate evolution in a Brassicaceae tribe. Mol. Biol. Evol. 38, 1695–1714 (2021). PubMed PMC
Liu X., et al. ., Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift? Natl. Sci. Rev. 2, 403–416 (2015).
Hövermann J., Süssenberger H., Zur Klimageschichte Hoch- und Ostasiens. Berl. Geogr. Stud. 20, 173–186 (1986).
Huang J., Yu H., Guan X., Wang G., Guo R., Accelerated dryland expansion under climate change. Nat. Clim. Chang. 6, 166–171 (2016).
Walden N., et al. ., Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 11, 3795 (2020). PubMed PMC
Van de Peer Y., Ashman T. L., Soltis P. S., Soltis D. E., Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 33, 11–26 (2021). PubMed PMC