Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32732942
PubMed Central
PMC7393125
DOI
10.1038/s41467-020-17605-7
PII: 10.1038/s41467-020-17605-7
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- Brassicaceae klasifikace genetika MeSH
- celogenomová asociační studie MeSH
- fylogeneze MeSH
- genetická variace genetika MeSH
- genom rostlinný genetika MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phylogenetic genome-wide association studies to analyze the evolution of morphological form and function.
Department of Botany Faculty of Science Charles University Benátská 2 128 01 Prague Czech Republic
GYDLE 1135 Grande Allée Ouest Québec QC G1S 1E7 Canada
School of Life Sciences Nanchang University 330031 Nanchang China
South Siberian Botanical Garden Altai State University Lenina Ave 61 656049 Barnaul Russia
Zobrazit více v PubMed
Foote M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 1997;28:129–152.
Oyston JW, Hughes M, Gerber S, Wills MA. Why should we investigate the morphological disparity of plant clades? Ann. Bot. 2016;117:859–879. PubMed PMC
Minelli A. Species diversity vs. morphological disparity in the light of evolutionary developmental biology. Ann. Bot. 2016;117:781–794. PubMed PMC
Hughes M, Gerber S, Wills MA. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA. 2013;110:13875–13879. PubMed PMC
Clark JW, Donoghue PCJ. Whole-genome duplication and plant macroevolution. Trends Plant Sci. 2018;23:933–945. PubMed
Li F-W, et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants. 2018;4:460–472. PubMed PMC
Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA. On the relative abundance of autopolyploids and allopolyploids. N. Phytol. 2016;210:391–398. PubMed
One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–685. PubMed PMC
Mayrose I, et al. Recently formed polyploid plants diversify at lower rates. Science. 2011;333:1257–1257. PubMed
Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science. 2013;342:1241089–1241089. PubMed
Bowers JE, Chapman BA, Rong J, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature. 2003;422:433–438. PubMed
Landis JB, et al. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 2018;105:348–363. PubMed
Lohaus R, Van de Peer Y. Of dups and dinos: evolution at the K/Pg boundary. Curr. Opin. Plant Biol. 2016;30:62–69. PubMed
Novikova PY, Hohmann N, Van de Peer Y. Polyploid Arabidopsis species originated around recent glaciation maxima. Curr. Opin. Plant Biol. 2018;42:8–15. PubMed
Hoffmeier A, et al. A dead gene walking: convergent degeneration of a clade of MADS-box genes in crucifers. Mol. Biol. Evol. 2018;35:2618–2638. PubMed
Tank DC, et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. N. Phytol. 2015;207:454–467. PubMed
Schranz ME, Mohammadin S, Edger PP. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 2012;15:147–153. PubMed
Karl R, Koch MA. A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. Ann. Bot. 2013;112:983–1001. PubMed PMC
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The “Polyploid Hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 2018;6:117.
Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ. The dynamic ups and downs of genome size evolution in Brassicaceae. Mol. Biol. Evol. 2009;26:85–98. PubMed
Edger PP, et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA. 2015;112:8362–8366. PubMed PMC
Chanderbali AS, Berger BA, Howarth DG, Soltis DE, Soltis PS. Evolution of floral diversity: genomics, genes and gamma. Philos. Trans. R. Soc. B. 2017;372:20150509. PubMed PMC
Koch MA, German DA, Kiefer M, Franzke A. Database taxonomics as key to modern plant biology. Trends Plant Sci. 2018;23:4–6. PubMed
Hohmann N, Wolf EM, Lysak MA, Koch MA. A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell. 2015;27:2770–2784. PubMed PMC
Koch, M. A. & Al-Shehbaz, I. A. in Biology and Breeding of Crucifers (ed. Gupta, S. K.) 1–19 (CRC Press, 2009).
Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci. 2011;16:108–116. PubMed
Huang C-H, et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol. Biol. Evol. 2016;33:394–412. PubMed PMC
Nikolov LA, et al. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. N. Phytol. 2019;222:1638–1651. PubMed
Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell. 2010;22:2277–2290. PubMed PMC
Mandáková T, Li Z, Barker MS, Lysak MA. Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant J. 2017;91:3–21. PubMed
Kiefer C, et al. Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. Nat. Plants. 2019;5:846–855. PubMed
Mandáková T, Hloušková P, German DA, Lysak MA. Monophyletic origin and evolution of the largest crucifer genomes. Plant Physiol. 2017;174:2062–2071. PubMed PMC
Mandáková T, Lysak MA. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 2018;42:55–65. PubMed
Huang X-C, German DA, Koch MA. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Ann. Bot. 2019;125:29–47. PubMed PMC
Nikolov LA. Brassicaceae flowers: diversity amid uniformity. J. Exp. Bot. 2019;70:2623–2635. PubMed
Vlad D, et al. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science. 2014;343:780–783. PubMed
Joly S, Heenan PB, Lockhart PJ. A Pleistocene inter-tribal allopolyploidization event precedes the species radiation of Pachycladon (Brassicaceae) in New Zealand. Mol. Phylogenetics Evol. 2009;51:365–372. PubMed
Forsythe, E. S., Nelson, A. D. L. & Beilstein, M. A. Biased gene retention in the face of massive nuclear introgression obscures species relationships. Preprint at https://www.biorxiv.org/content/10.1101/197087v2 (2017). PubMed DOI PMC
Guo X, et al. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics. 2017;18:e176. PubMed PMC
Kagale S, et al. Polyploid evolution of the Brassicaceae during the Cenozoic era. Plant Cell. 2014;26:2777–2791. PubMed PMC
Wood TE, et al. The frequency of polyploid speciation in vascular plants. Proc. Natl Acad. Sci. USA. 2009;106:13875–13879. PubMed PMC
Mandáková T, et al. Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol. Ecol. 2017;26:6445–6462. PubMed
Soltis PS, Soltis DE. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 2016;30:159–165. PubMed
Zhang J, et al. Genome of plant Maca (Lepidium meyenii) illuminates genomic basis for high-altitude adaptation in the Central Andes. Mol. Plant. 2016;9:1066–1077. PubMed
Beilstein MA, Al-Shehbaz IA, Kellogg EA. Brassicaceae phylogeny and trichome evolution. Am. J. Bot. 2006;93:607–619. PubMed
Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA. Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am. J. Bot. 2008;95:1307–1327. PubMed
Doroshkov AV, Konstantinov DK, Afonnikov DA, Gunbin KV. The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development. BMC Plant Biol. 2019;19:53. PubMed PMC
Sato Y, Shimizu-Inatsugi R, Yamazaki M, Shimizu KK, Nagano AJ. Plant trichomes and a single gene GLABRA1 contribute to insect community composition on field-grown Arabidopsis thaliana. BMC Plant Biol. 2019;19:163. PubMed PMC
Sletvold N, Huttunen P, Handley R, Kärkkäinen K, Ågren J. Cost of trichome production and resistance to a specialist insect herbivore in Arabidopsis lyrata. Evol. Ecol. 2010;24:1307–1319.
Willis CG, Hall JC, Rubio de Casas R, Wang TY, Donohue K. Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae) Ann. Bot. 2014;114:1675–1686. PubMed PMC
Lysak MA. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005;15:516–525. PubMed PMC
Louca S, Pennell MW. Extant timetrees are consistent with a myriad of diversification histories. Nature. 2020;580:502–505. PubMed
Haudry A, et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 2013;45:891–898. PubMed
Schranz M, Lysak M, Mitchellolds T. The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 2006;11:535–542. PubMed
Lysak MA, Mandáková T, Schranz ME. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 2016;30:108–115. PubMed
Hu TT, et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 2011;43:476–481. PubMed PMC
Murat F, et al. Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol. 2015;16:262. PubMed PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. PubMed PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. PubMed
Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 2014;14:82. PubMed PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. PubMed PMC
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. PubMed
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. PubMed PMC
Bouckaert R, et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:e1003537. PubMed PMC
Gittleman JL, Kot M. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Biol. 1990;39:227–241.
Keck F, Rimet F, Bouchez A, Franc A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 2016;6:2774–2780. PubMed PMC
Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE. 2014;9:e89543. PubMed PMC
Stevens, P. F. Angiosperm Phylogeny Website. Angiosperm Phylogeny Website. Version 14, July 2017. http://www.mobot.org/MOBOT/Research/APweb/ (2019).
Rabosky DL, et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 2014;5:701–707.
Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnosis and output analysis for MCMC. R. News. 2006;6:7–11.
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94. PubMed PMC
Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–3071. PubMed PMC
Salariato DL, Zuloaga FO, Franzke A, Mummenhoff K, Al-Shehbaz IA. Diversification patterns in the CES clade (Brassicaceae tribes Cremolobeae, Eudemeae, Schizopetaleae) in Andean South America. Botanical J. Linn. Soc. 2016;181:543–566.
Felsenstein J. Phylogenies and the comparative method. Am. Naturalist. 1985;125:1–15.
Garland T, Janis CM, Jones JA. Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 1993;42:28.
Revell L. J. phytools: an R package for phylogenetic comparative biology (and other things): phytools: R package. Methods Ecol. Evol. 2012;3:217–223.
Complementing model species with model clades
An updated classification of the Brassicaceae (Cruciferae)
Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution
Genome evolution of the psammophyte Pugionium for desert adaptation and further speciation
Dryad
10.5061/dryad.fttdz08pt