Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae

. 2020 Jul 30 ; 11 (1) : 3795. [epub] 20200730

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32732942
Odkazy

PubMed 32732942
PubMed Central PMC7393125
DOI 10.1038/s41467-020-17605-7
PII: 10.1038/s41467-020-17605-7
Knihovny.cz E-zdroje

Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phylogenetic genome-wide association studies to analyze the evolution of morphological form and function.

Zobrazit více v PubMed

Foote M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 1997;28:129–152.

Oyston JW, Hughes M, Gerber S, Wills MA. Why should we investigate the morphological disparity of plant clades? Ann. Bot. 2016;117:859–879. PubMed PMC

Minelli A. Species diversity vs. morphological disparity in the light of evolutionary developmental biology. Ann. Bot. 2016;117:781–794. PubMed PMC

Hughes M, Gerber S, Wills MA. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA. 2013;110:13875–13879. PubMed PMC

Clark JW, Donoghue PCJ. Whole-genome duplication and plant macroevolution. Trends Plant Sci. 2018;23:933–945. PubMed

Li F-W, et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants. 2018;4:460–472. PubMed PMC

Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA. On the relative abundance of autopolyploids and allopolyploids. N. Phytol. 2016;210:391–398. PubMed

One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–685. PubMed PMC

Mayrose I, et al. Recently formed polyploid plants diversify at lower rates. Science. 2011;333:1257–1257. PubMed

Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science. 2013;342:1241089–1241089. PubMed

Bowers JE, Chapman BA, Rong J, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature. 2003;422:433–438. PubMed

Landis JB, et al. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 2018;105:348–363. PubMed

Lohaus R, Van de Peer Y. Of dups and dinos: evolution at the K/Pg boundary. Curr. Opin. Plant Biol. 2016;30:62–69. PubMed

Novikova PY, Hohmann N, Van de Peer Y. Polyploid Arabidopsis species originated around recent glaciation maxima. Curr. Opin. Plant Biol. 2018;42:8–15. PubMed

Hoffmeier A, et al. A dead gene walking: convergent degeneration of a clade of MADS-box genes in crucifers. Mol. Biol. Evol. 2018;35:2618–2638. PubMed

Tank DC, et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. N. Phytol. 2015;207:454–467. PubMed

Schranz ME, Mohammadin S, Edger PP. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 2012;15:147–153. PubMed

Karl R, Koch MA. A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. Ann. Bot. 2013;112:983–1001. PubMed PMC

Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The “Polyploid Hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 2018;6:117.

Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ. The dynamic ups and downs of genome size evolution in Brassicaceae. Mol. Biol. Evol. 2009;26:85–98. PubMed

Edger PP, et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA. 2015;112:8362–8366. PubMed PMC

Chanderbali AS, Berger BA, Howarth DG, Soltis DE, Soltis PS. Evolution of floral diversity: genomics, genes and gamma. Philos. Trans. R. Soc. B. 2017;372:20150509. PubMed PMC

Koch MA, German DA, Kiefer M, Franzke A. Database taxonomics as key to modern plant biology. Trends Plant Sci. 2018;23:4–6. PubMed

Hohmann N, Wolf EM, Lysak MA, Koch MA. A time-calibrated road map of Brassicaceae species radiation and evolutionary history. Plant Cell. 2015;27:2770–2784. PubMed PMC

Koch, M. A. & Al-Shehbaz, I. A. in Biology and Breeding of Crucifers (ed. Gupta, S. K.) 1–19 (CRC Press, 2009).

Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci. 2011;16:108–116. PubMed

Huang C-H, et al. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. Mol. Biol. Evol. 2016;33:394–412. PubMed PMC

Nikolov LA, et al. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. N. Phytol. 2019;222:1638–1651. PubMed

Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell. 2010;22:2277–2290. PubMed PMC

Mandáková T, Li Z, Barker MS, Lysak MA. Diverse genome organization following 13 independent mesopolyploid events in Brassicaceae contrasts with convergent patterns of gene retention. Plant J. 2017;91:3–21. PubMed

Kiefer C, et al. Interspecies association mapping links reduced CG to TG substitution rates to the loss of gene-body methylation. Nat. Plants. 2019;5:846–855. PubMed

Mandáková T, Hloušková P, German DA, Lysak MA. Monophyletic origin and evolution of the largest crucifer genomes. Plant Physiol. 2017;174:2062–2071. PubMed PMC

Mandáková T, Lysak MA. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 2018;42:55–65. PubMed

Huang X-C, German DA, Koch MA. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. Ann. Bot. 2019;125:29–47. PubMed PMC

Nikolov LA. Brassicaceae flowers: diversity amid uniformity. J. Exp. Bot. 2019;70:2623–2635. PubMed

Vlad D, et al. Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science. 2014;343:780–783. PubMed

Joly S, Heenan PB, Lockhart PJ. A Pleistocene inter-tribal allopolyploidization event precedes the species radiation of Pachycladon (Brassicaceae) in New Zealand. Mol. Phylogenetics Evol. 2009;51:365–372. PubMed

Forsythe, E. S., Nelson, A. D. L. & Beilstein, M. A. Biased gene retention in the face of massive nuclear introgression obscures species relationships. Preprint at https://www.biorxiv.org/content/10.1101/197087v2 (2017). PubMed DOI PMC

Guo X, et al. Plastome phylogeny and early diversification of Brassicaceae. BMC Genomics. 2017;18:e176. PubMed PMC

Kagale S, et al. Polyploid evolution of the Brassicaceae during the Cenozoic era. Plant Cell. 2014;26:2777–2791. PubMed PMC

Wood TE, et al. The frequency of polyploid speciation in vascular plants. Proc. Natl Acad. Sci. USA. 2009;106:13875–13879. PubMed PMC

Mandáková T, et al. Multispeed genome diploidization and diversification after an ancient allopolyploidization. Mol. Ecol. 2017;26:6445–6462. PubMed

Soltis PS, Soltis DE. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 2016;30:159–165. PubMed

Zhang J, et al. Genome of plant Maca (Lepidium meyenii) illuminates genomic basis for high-altitude adaptation in the Central Andes. Mol. Plant. 2016;9:1066–1077. PubMed

Beilstein MA, Al-Shehbaz IA, Kellogg EA. Brassicaceae phylogeny and trichome evolution. Am. J. Bot. 2006;93:607–619. PubMed

Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA. Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am. J. Bot. 2008;95:1307–1327. PubMed

Doroshkov AV, Konstantinov DK, Afonnikov DA, Gunbin KV. The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development. BMC Plant Biol. 2019;19:53. PubMed PMC

Sato Y, Shimizu-Inatsugi R, Yamazaki M, Shimizu KK, Nagano AJ. Plant trichomes and a single gene GLABRA1 contribute to insect community composition on field-grown Arabidopsis thaliana. BMC Plant Biol. 2019;19:163. PubMed PMC

Sletvold N, Huttunen P, Handley R, Kärkkäinen K, Ågren J. Cost of trichome production and resistance to a specialist insect herbivore in Arabidopsis lyrata. Evol. Ecol. 2010;24:1307–1319.

Willis CG, Hall JC, Rubio de Casas R, Wang TY, Donohue K. Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae) Ann. Bot. 2014;114:1675–1686. PubMed PMC

Lysak MA. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005;15:516–525. PubMed PMC

Louca S, Pennell MW. Extant timetrees are consistent with a myriad of diversification histories. Nature. 2020;580:502–505. PubMed

Haudry A, et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 2013;45:891–898. PubMed

Schranz M, Lysak M, Mitchellolds T. The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci. 2006;11:535–542. PubMed

Lysak MA, Mandáková T, Schranz ME. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited. Curr. Opin. Plant Biol. 2016;30:108–115. PubMed

Hu TT, et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 2011;43:476–481. PubMed PMC

Murat F, et al. Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol. 2015;16:262. PubMed PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. PubMed PMC

Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. PubMed

Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evol. Biol. 2014;14:82. PubMed PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. PubMed PMC

Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. PubMed

Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. PubMed PMC

Bouckaert R, et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:e1003537. PubMed PMC

Gittleman JL, Kot M. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Biol. 1990;39:227–241.

Keck F, Rimet F, Bouchez A, Franc A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 2016;6:2774–2780. PubMed PMC

Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE. 2014;9:e89543. PubMed PMC

Stevens, P. F. Angiosperm Phylogeny Website. Angiosperm Phylogeny Website. Version 14, July 2017. http://www.mobot.org/MOBOT/Research/APweb/ (2019).

Rabosky DL, et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 2014;5:701–707.

Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnosis and output analysis for MCMC. R. News. 2006;6:7–11.

Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94. PubMed PMC

Jombart T, Ahmed I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–3071. PubMed PMC

Salariato DL, Zuloaga FO, Franzke A, Mummenhoff K, Al-Shehbaz IA. Diversification patterns in the CES clade (Brassicaceae tribes Cremolobeae, Eudemeae, Schizopetaleae) in Andean South America. Botanical J. Linn. Soc. 2016;181:543–566.

Felsenstein J. Phylogenies and the comparative method. Am. Naturalist. 1985;125:1–15.

Garland T, Janis CM, Jones JA. Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 1993;42:28.

Revell L. J. phytools: an R package for phylogenetic comparative biology (and other things): phytools: R package. Methods Ecol. Evol. 2012;3:217–223.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Complementing model species with model clades

. 2024 May 01 ; 36 (5) : 1205-1226.

Completing the TRB family: newly characterized members show ancient evolutionary origins and distinct localization, yet similar interactions

. 2023 May ; 112 (1-2) : 61-83. [epub] 20230428

An updated classification of the Brassicaceae (Cruciferae)

. 2023 ; 220 () : 127-144. [epub] 20230306

The evolutionary history of Cardamine bulbifera shows a successful rapid postglacial Eurasian range expansion in the absence of sexual reproduction

. 2022 Sep 06 ; 130 (2) : 245-263.

Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution

. 2022 Aug 29 ; 190 (1) : 403-420.

The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis

. 2022 Apr 21 ; 23 (9) : . [epub] 20220421

Stability in the South, Turbulence Toward the North: Evolutionary History of Aurinia saxatilis (Brassicaceae) Revealed by Phylogenomic and Climatic Modelling Data

. 2022 ; 13 () : 822331. [epub] 20220314

Genome evolution of the psammophyte Pugionium for desert adaptation and further speciation

Linked by Ancestral Bonds: Multiple Whole-Genome Duplications and Reticulate Evolution in a Brassicaceae Tribe

. 2021 May 04 ; 38 (5) : 1695-1714.

Zobrazit více v PubMed

Dryad
10.5061/dryad.fttdz08pt

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...