Association Between Inferior Turbinate Hypertrophy and Extraesophageal Reflux
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35771544
PubMed Central
PMC9247855
DOI
10.1001/jamaoto.2022.1638
PII: 2793686
Knihovny.cz E-resources
- MeSH
- Adult MeSH
- Gastroesophageal Reflux * complications diagnosis MeSH
- Hypertrophy MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Paranasal Sinus Diseases * MeSH
- Turbinates surgery MeSH
- Prospective Studies MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
IMPORTANCE: To the authors' knowledge, no prior studies have examined the association between inferior turbinate hypertrophy (ITH) and extraesophageal reflux (EER). If EER were a cause or cofactor of ITH, antireflux treatment can be considered prior to surgical intervention. OBJECTIVE: To evaluate EER presence and severity in patients with different degrees of ITH. DESIGN, SETTING, AND PARTICIPANTS: Prospective multicentric cohort study conducted at 3 referral centers treating patients with EER and certified for 24-hour monitoring of oropharyngeal pH. The monitoring was performed between October 2020 and October 2021. A total of 94 adult patients with EER symptoms were recruited, 90 of whom were analyzed. INTERVENTIONS: Nasal endoscopy was performed to determine the degree of ITH, according to the Camacho classification. Presence and severity of EER were examined using 24-hour monitoring of oropharyngeal pH. MAIN OUTCOMES AND MEASURES: Primary outcomes were presence of EER according to RYAN Score, total percentage of time below pH 5.5, and total numbers of EER events below pH 5.5. RESULTS: Of the 90 analyzed patients (median [IQR] age, 46 [33-58] years; 36 [40%] male patients), 41 had a maximum of second-degree ITH (group 1), and 49 patients had at least third-degree ITH (group 2), according to the Camacho classification. On the basis of the RYAN Score, EER was diagnosed more often in group 2 (69.4%) than in group 1 (34.1%; difference, 35.3% [95% CI, 13.5%-56.9%]). Moreover, compared with group 1, group 2 exhibited higher median total percentage of time below pH 5.5 (median [IQR], group 1: 2.1% [0.0%-9.4%], group 2: 11.2% [1.5%-15.8%]; difference, 9.1% [95% CI, 4.1%-11.8%]) and higher median total number of EER events (median [IQR], group 1: 6 [1-14] events, group 2: 14 [4-26] events; difference, 8 [95% CI, 2-15] events). Patients with proven EER demonstrated no difference in the degree of ITH between the right and left nasal cavity (Cohen g, -0.17 [95% CI, -0.50 to 0.30]), or between the anterior and posterior parts of the nasal cavity (Cohen g, -0.21 [95% CI, -0.50 to 0.17]). CONCLUSIONS AND RELEVANCE: In this cohort study, patients with a higher degree of ITH had more severe EER. A possible association between severe ITH and EER was demonstrated.
See more in PubMed
Mohan S, Fuller JC, Ford SF, Lindsay RW. Diagnostic and therapeutic management of nasal airway obstruction: advances in diagnosis and treatment. JAMA Facial Plast Surg. 2018;20(5):409-418. doi:10.1001/jamafacial.2018.0279 PubMed DOI
Bergmark RW, Gray ST. Surgical management of turbinate hypertrophy. Otolaryngol Clin North Am. 2018;51(5):919-928. doi:10.1016/j.otc.2018.05.008 PubMed DOI
Ricciardiello F, Pisani D, Viola P, et al. . The role of quantic molecular resonance (QMR) in the treatment of inferior turbinate hypertrophy (ITH): our experience with long-term follow-up in allergic and nonallergic rhinitis refractory to medical therapy. preliminary results. Ear Nose Throat J. Published online June 3, 2021. doi:10.1177/01455613211001599 PubMed DOI
Fokkens WJ, Lund VJ, Hopkins C, et al. . European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(suppl S29):1-464. doi:10.4193/Rhin20.401 PubMed DOI
Cai Y, Goldberg AN, Chang JL. The nose and nasal breathing in sleep apnea. Otolaryngol Clin North Am. 2020;53(3):385-395. doi:10.1016/j.otc.2020.02.002 PubMed DOI
Zeleník K, Matoušek P, Formánek M, Urban O, Komínek P. Patients with chronic rhinosinusitis and simultaneous bronchial asthma suffer from significant extraesophageal reflux. Int Forum Allergy Rhinol. 2015;5(10):944-949. doi:10.1002/alr.21560 PubMed DOI
DelGaudio JM. Direct nasopharyngeal reflux of gastric acid is a contributing factor in refractory chronic rhinosinusitis. Laryngoscope. 2005;115(6):946-957. doi:10.1097/01.MLG.0000163751.00885.63 PubMed DOI
Jecker P, Orloff LA, Wohlfeil M, Mann WJ. Gastroesophageal reflux disease (GERD), extraesophageal reflux (EER) and recurrent chronic rhinosinusitis. Eur Arch Otorhinolaryngol. 2006;263(7):664-667. doi:10.1007/s00405-006-0022-1 PubMed DOI
Leason SR, Barham HP, Oakley G, et al. . Association of gastro-oesophageal reflux and chronic rhinosinusitis: systematic review and meta-analysis. Rhinology. 2017;55(1):3-16. doi:10.4193/Rhin16.177 PubMed DOI
Lechien JR, Debie G, Mahillon V, et al. . A 10-year follow-up of a randomized prospective study of 2 treatments for chronic rhinosinusitis without nasal polyps and investigation of the impact of gastroeosophageal reflux disease in the resistance to treatment. Ear Nose Throat J. 2021;100(5)(suppl):569S-577S. doi:10.1177/0145561319892460 PubMed DOI
Formánek M, Zeleník K, Komínek P, Matoušek P. Diagnosis of extraesophageal reflux in children with chronic otitis media with effusion using Peptest. Int J Pediatr Otorhinolaryngol. 2015;79(5):677-679. doi:10.1016/j.ijporl.2015.02.013 PubMed DOI
O’Reilly RC, Soundar S, Ton D, et al. . The role of gastric pepsin in the inflammatory cascade of pediatric otitis media. JAMA Otolaryngol Head Neck Surg. 2015;141(4):350-357. doi:10.1001/jamaoto.2014.3581 PubMed DOI
Lechien JR, Akst LM, Hamdan AL, et al. . Evaluation and management of laryngopharyngeal reflux disease: state of the art review. Otolaryngol Head Neck Surg. 2019;160(5):762-782. doi:10.1177/0194599819827488 PubMed DOI
Belafsky PC, Postma GN, Koufman JA. Validity and reliability of the Reflux Symptom Index (RSI). J Voice. 2002;16(2):274-277. doi:10.1016/S0892-1997(02)00097-8 PubMed DOI
Hopkins C, Gillett S, Slack R, Lund VJ, Browne JP. Psychometric validity of the 22-item Sinonasal Outcome Test. Clin Otolaryngol. 2009;34(5):447-454. doi:10.1111/j.1749-4486.2009.01995.x PubMed DOI
Camacho M, Zaghi S, Certal V, et al. . Inferior turbinate classification system, grades 1 to 4: development and validation study. Laryngoscope. 2015;125(2):296-302. doi:10.1002/lary.24923 PubMed DOI
Camacho M, Zaghi S, Certal V, et al. . Predictors of nasal obstruction: quantification and assessment using multiple grading scales. Plast Surg Int. 2016;2016:6945297. doi:10.1155/2016/6945297 PubMed DOI PMC
Sun G, Muddana S, Slaughter JC, et al. . A new pH catheter for laryngopharyngeal reflux: normal values. Laryngoscope. 2009;119(8):1639-1643. doi:10.1002/lary.20282 PubMed DOI
Dagli E, Yüksel A, Kaya M, Ugur KS, Turkay FC. Association of oral antireflux medication with laryngopharyngeal reflux and nasal resistance. JAMA Otolaryngol Head Neck Surg. 2017;143(5):478-483. doi:10.1001/jamaoto.2016.4127 PubMed DOI PMC
Finocchio E, Locatelli F, Sanna F, et al. . Gastritis and gastroesophageal reflux disease are strongly associated with non-allergic nasal disorders. BMC Pulm Med. 2021;21(1):53. doi:10.1186/s12890-020-01364-8 PubMed DOI PMC
Klimara MJ, Johnston N, Samuels TL, et al. . Correlation of salivary and nasal lavage pepsin with MII-pH testing. Laryngoscope. 2020;130(4):961-966. doi:10.1002/lary.28182 PubMed DOI
Loehrl TA, Samuels TL, Poetker DM, Toohill RJ, Blumin JH, Johnston N. The role of extraesophageal reflux in medically and surgically refractory rhinosinusitis. Laryngoscope. 2012;122(7):1425-1430. doi:10.1002/lary.23283 PubMed DOI
Ozmen S, Yücel OT, Sinici I, et al. . Nasal pepsin assay and pH monitoring in chronic rhinosinusitis. Laryngoscope. 2008;118(5):890-894. doi:10.1097/MLG.0b013e318165e324 PubMed DOI
Kim B, Lee HJ, Im NR, et al. . Effect of matrix metalloproteinase inhibitor on disrupted E-cadherin after acid exposure in the human nasal epithelium. Laryngoscope. 2018;128(1):E1-E7. doi:10.1002/lary.26932 PubMed DOI
Wang J, Zhao Y, Ren J, et al. . Heat shock protein 70 is induced by pepsin via MAPK signaling in human nasal epithelial cells. Eur Arch Otorhinolaryngol. 2019;276(3):767-774. doi:10.1007/s00405-018-5254-3 PubMed DOI
Wang J, Yu Z, Ren J, et al. . Effects of pepsin A on heat shock protein 70 response in laryngopharyngeal reflux patients with chronic rhinosinusitis. Acta Otolaryngol. 2017;137(12):1253-1259. doi:10.1080/00016489.2017.1360515 PubMed DOI