Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
9451008
PubMed Central
PMC1170432
DOI
10.1093/emboj/17.3.838
Knihovny.cz E-zdroje
- MeSH
- elektronová mikroskopie MeSH
- Kinetoplastida genetika ultrastruktura MeSH
- kinetoplastová DNA chemie genetika ultrastruktura MeSH
- konformace nukleové kyseliny MeSH
- kruhová DNA analýza MeSH
- mitochondriální DNA ultrastruktura MeSH
- mitochondrie genetika ultrastruktura MeSH
- protozoální DNA analýza chemie ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kinetoplastová DNA MeSH
- kruhová DNA MeSH
- mitochondriální DNA MeSH
- protozoální DNA MeSH
The mitochondrial DNA (mtDNA) of a primitive kinetoplastid flagellate Cryptobia helicis is composed of 4.2 kb minicircles and 43 kb maxicircles. 85% and 6% of the minicircles are in the form of supercoiled (SC) and relaxed (OC) monomers, respectively. The remaining minicircles (9%) constitute catenated oligomers composed of both the SC and OC molecules. Minicircles contain bent helix and sequences homologous to the minicircle conserved sequence blocks. Maxicircles encode typical mitochondrial genes and are not catenated. The mtDNA, which we describe with the term 'pankinetoplast DNA', is spread throughout the mitochondrial lumen, where it is associated with multiple electron-lucent loci. There are approximately 8400 minicircles per pankinetoplast-mitochondrion, with the pan-kDNA representing approximately 36% of the total cellular DNA. Based on the similarity of the C.helicis minicircles to plasmids, we present a theory on the formation of the kDNA network.
Zobrazit více v PubMed
Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11608-12 PubMed
EMBO J. 1993 Feb;12(2):403-11 PubMed
Mol Cell Biol. 1994 Jun;14(6):3660-7 PubMed
J Cell Biol. 1994 Aug;126(3):641-8 PubMed
EMBO J. 1994 Nov 1;13(21):5086-98 PubMed
Mol Cell Biol. 1994 Dec;14(12):8174-82 PubMed
Cell. 1995 Jan 13;80(1):61-9 PubMed
J Mol Biol. 1995 Feb 3;245(5):522-37 PubMed
J Mol Evol. 1995 Apr;40(4):443-54 PubMed
Cell. 1995 Jun 16;81(6):837-40 PubMed
Annu Rev Microbiol. 1995;49:117-43 PubMed
Mol Biochem Parasitol. 1995 Jul;73(1-2):279-83 PubMed
EMBO J. 1995 Dec 15;14(24):6339-47 PubMed
Mol Gen Genet. 1995 Nov 1;249(1):25-36 PubMed
Mol Gen Genet. 1996 Feb 25;250(3):305-15 PubMed
Biochim Biophys Acta. 1996 Jun 3;1307(1):39-54 PubMed
Mol Biochem Parasitol. 1996 Jan;75(2):197-205 PubMed
RNA. 1996 Nov;2(11):1153-60 PubMed
Trends Genet. 1997 Jan;13(1):6-9 PubMed
Science. 1997 Feb 7;275(5301):790-1 PubMed
J Mol Evol. 1997 May;44(5):521-7 PubMed
Mol Biochem Parasitol. 1997 Jun;86(2):133-41 PubMed
Biochim Biophys Acta. 1975 May 1;390(2):155-67 PubMed
Nucleic Acids Res. 1978 Feb;5(2):491-504 PubMed
J Biol Chem. 1979 Jun 10;254(11):4895-900 PubMed
Mol Biochem Parasitol. 1981 Feb;2(3-4):219-33 PubMed
J Biol Chem. 1986 Aug 25;261(24):11302-9 PubMed
Mol Cell Biol. 1986 Dec;6(12):4372-8 PubMed
Mol Cell Biol. 1989 Mar;9(3):1365-7 PubMed
Mol Cell Biol. 1989 Aug;9(8):3212-7 PubMed
Cell. 1990 Jun 1;61(5):879-84 PubMed
Cell. 1990 Nov 16;63(4):783-90 PubMed
Trends Genet. 1991 May;7(5):139-41 PubMed
Mol Biochem Parasitol. 1992 Jan;50(1):115-25 PubMed
Cell. 1992 Aug 21;70(4):621-9 PubMed
Nature. 1994 Mar 24;368(6469):345-8 PubMed
Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses
Massive mitochondrial DNA content in diplonemid and kinetoplastid protists
Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?
Systematically fragmented genes in a multipartite mitochondrial genome
Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates
Kinetoplast DNA network: evolution of an improbable structure
GENBANK
AF034623