Production of Bovine Equol-Enriched Milk: A Review

. 2021 Mar 08 ; 11 (3) : . [epub] 20210308

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33800327

Grantová podpora
206/2017/FVHE Veterinární a Farmaceutická Univerzita Brno
MUNI/A/1604/2020 Masarykova Univerzita

Milk and dairy products are important sources of nutrients in the human diet because they contain a number of essential substances and other biologically active components. Many of these substances can be modified, and thus offer opportunities to use milk and dairy products as functional food. Isoflavones are particularly important in human nutrition due to their diverse pharmacological and antioxidant properties. The clinical effectiveness of isoflavone-rich products is believed to be dependent on their ability to metabolize daidzein to equol, which may directly exert cancer preventive effects. However, only approximately 30-40% of humans are able to produce equol, while animals, in general, produce equol. Equol is the predominant product of bacterial metabolism of isoflavones and can be found in various amounts in some food of animal origin, especially in milk. Therefore, milk and dairy products can be considered to be sources of equol for humans who are not able to produce this metabolite. When the content of isoflavones in milk is to be modified, two groups of factors should be considered, i.e., dietary factors that include the source of isoflavones and the processing effects on feedstuffs and animal factors that include the intake of isoflavones, ruminal and postruminal changes, and the health and physiological status of animals. The approximate content of isoflavones in milk can be predicted using carry-over rates for different dietary sources or using a formula that describes the relationship between equol concentration in milk and formononetin intake. Processing and storage can affect the content and profile of isoflavones in milk and dairy products.

Zobrazit více v PubMed

Granato D., Barba F.J., Kovačević D.B., Lorenzo J.M., Cruz A.G., Putnik P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020;11:93–118. doi: 10.1146/annurev-food-032519-051708. PubMed DOI

Martirosyan D.M., Singh J. A New Definition of Functional Food by FFC: What Makes a New Definition Unique? Funct. Foods Health Dis. 2015;5:209–223. doi: 10.31989/ffhd.v5i6.183. DOI

Tunick M.H., Van Hekken D.L. Dairy Products and Health: Recent Insights. J. Agric. Food Chem. 2015;63:9381–9388. doi: 10.1021/jf5042454. PubMed DOI

Bhat Z.F., Bhat H. Milk and Dairy Products as Functional Foods: A Review. Int. J. Dairy Sci. 2011;6:1–12. doi: 10.3923/ijds.2011.1.12. DOI

Křížová L., Dadáková K., Kašparovská J., Kašparovský T. Isoflavones. Molecules. 2019;24:1076. doi: 10.3390/molecules24061076. PubMed DOI PMC

de Ávila A.R.A., de Queirós L.D., Ueta T.M., Macedo G.A., Macedo J.A. Exploring in Vitro Effects of Biotransformed Isoflavones Extracts: Antioxidant, Antiinflammatory, and Antilipogenic. J. Food Biochem. 2019;43:e12850. doi: 10.1111/jfbc.12850. PubMed DOI

Gray S.L., Lackey B.R. Optimizing a Recombinant Estrogen Receptor Binding Assay for Analysis of Herbal Extracts. J. Herb. Med. 2019;15:100252. doi: 10.1016/j.hermed.2018.12.002. DOI

Wójciak–Kosior M., Dresler S., Sowa I., Łuć K., Staniak M., Latalski M., Zapała-Kiełbowicz K., Kocjan R. Effect of various strontium concentrations on its uptake and the content of isoflavones in soybean sprouts. Acta Biol. Crac. Bot. 2019;61:7–12. doi: 10.24425/ABCSB.2019.127743. DOI

Liu Y., Hassan S., Kidd B.N., Garg G., Mathesius U., Singh K.B., Anderson J.P. Ethylene Signaling Is Important for Isoflavonoid-Mediated Resistance to Rhizoctonia solani in Roots of Medicago Truncatula. Mol. Plant-Microbe Interact. 2017;30:691–700. doi: 10.1094/MPMI-03-17-0057-R. PubMed DOI

Wocławek-Potocka I., Mannelli C., Boruszewska D., Kowalczyk-Zieba I., Waśniewski T., Skarżyński D.J. Diverse Effects of Phytoestrogens on the Reproductive Performance: Cow as a Model. Int. J. Endocrinol. 2013:650984. doi: 10.1155/2013/650984. PubMed DOI PMC

Franke A.A., Lai J.F., Halm B.M. Absorption, Distribution, Metabolism, and Excretion of Isoflavonoids after Soy Intake. Arch. Biochem. Biophys. 2014;559:24–28. doi: 10.1016/j.abb.2014.06.007. PubMed DOI PMC

Wang J., Yu H., Yili A., Gao Y., Hao L., Aisa H.A., Liu S. Identification of Hub Genes and Potential Molecular Mechanisms of Chickpea Isoflavones on MCF-7 Breast Cancer Cells by Integrated Bioinformatics Analysis. Ann. Transl. Med. 2020;8:86. doi: 10.21037/atm.2019.12.141. PubMed DOI PMC

Cheverasan A., Mioc M., Simu S., Soica C., Dehelean C., Szasz F., Navolan D., Poenaru M. Binding Affinity of 17-b-Ethinylestradiol to Normal and Mutant Types of Estrogen Receptors an in Silico Evaluation. Rev. Chim. 2018;69:2067–2070. doi: 10.37358/RC.18.8.6475. DOI

Vitale D.C., Piazza C., Melilli B., Drago F., Salomone S. Isoflavones: Estrogenic Activity, Biological Effect and Bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2013;38:15–25. doi: 10.1007/s13318-012-0112-y. PubMed DOI

Cipolletti M., Solar Fernandez V., Montalesi E., Marino M., Fiocchetti M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: The Modulation of Estrogen Receptors (ERs) Signaling. Int. J. Mol. Sci. 2018;19:2624. doi: 10.3390/ijms19092624. PubMed DOI PMC

Abo-elsoud M.A., Hashem N.M., Nour El-Din A.N.M., Kamel K.I., Hassan G.A. Soybean Isoflavone Affects in Rabbits: Effects on Metabolism, Antioxidant Capacity, Hormonal Balance and Reproductive Performance. Anim. Reprod. Sci. 2019;203:52–60. doi: 10.1016/j.anireprosci.2019.02.007. PubMed DOI

Peres J.A., Domínguez J.R., Beltran-Heredia J. Reaction of Phenolic Acids with Fenton-Generated Hydroxyl Radicals: Hammett Correlation. Desalination. 2010;252:167–171. doi: 10.1016/j.desal.2009.10.002. DOI

Rizzo G. The Antioxidant Role of Soy and Soy Foods in Human Health. Antioxidants. 2020;9:635. doi: 10.3390/antiox9070635. PubMed DOI PMC

Monteiro N.E.S., Queirós L.D., Lopes D.B., Pedro A.O., Macedo G.A. Impact of Microbiota on the Use and Effects of Isoflavones in the Relief of Climacteric Symptoms in Menopausal Women—A Review. J. Funct. Foods. 2018;41:100–111. doi: 10.1016/j.jff.2017.12.043. DOI

Chen L.-R., Ko N.-Y., Chen K.-H. Isoflavone Supplements for Menopausal Women: A Systematic Review. Nutrients. 2019;11:2649. doi: 10.3390/nu11112649. PubMed DOI PMC

Carmignani L.O., Pedro A.O., da Costa-Paiva L.H.S., Pinto-Neto A.M. The Effect of Soy Dietary Supplement and Low Dose of Hormone Therapy on Main Cardiovascular Health Biomarkers: A Randomized Controlled Trial. Rev. Bras. Ginecol. Obs. 2014;36:251–258. doi: 10.1590/S0100-720320140004976. PubMed DOI

Ferreira L.L., Silva T.R., Maturana M.A., Spritzer P.M. Dietary Intake of Isoflavones Is Associated with a Lower Prevalence of Subclinical Cardiovascular Disease in Postmenopausal Women: Cross-Sectional Study. J. Hum. Nutr. Diet. 2019;32:810–818. doi: 10.1111/jhn.12683. PubMed DOI

Ye C.F., Pan Y.M., Zhou H. Regulation of Vitamin D Receptor and Genistein on Bone Metabolism in Mouse Osteoblasts and the Molecular Mechanism of Osteoporosis. J. Biol. Regul. Homeost. Agents. 2018;32:497–505. PubMed

Filipović B., Šošić-Jurjević B., Ajdžanović V., Živanović J., Manojlović-Stojanoski M., Nestorović N., Ristić N., Trifunović S., Milošević V. The Phytoestrogen Genistein Prevents Trabecular Bone Loss and Affects Thyroid Follicular Cells in a Male Rat Model of Osteoporosis. J. Anat. 2018;233:204–212. doi: 10.1111/joa.12828. PubMed DOI PMC

Tousen Y., Ezaki J., Fujii Y., Ueno T., Nishimuta M., Ishimi Y. Natural S-Equol Decreases Bone Resorption in Postmenopausal, Non-Equol-Producing Japanese Women: A Pilot Randomized, Placebo-Controlled Trial. Menopause. 2011;18:563–574. doi: 10.1097/gme.0b013e3181f85aa7. PubMed DOI

Ishimi Y. Dietary Equol and Bone Metabolism in Postmenopausal Japanese Women and Osteoporotic Mice. J. Nutr. 2010;140:1373S–1376S. doi: 10.3945/jn.110.124842. PubMed DOI

Taku K., Melby M.K., Nishi N., Omori T., Kurzer M.S. Soy Isoflavones for Osteoporosis: An Evidence-Based Approach. Maturitas. 2011;70:333–338. doi: 10.1016/j.maturitas.2011.09.001. PubMed DOI

Pawlowski J.W., Martin B.R., McCabe G.P., McCabe L., Jackson G.S., Peacock M., Barnes S., Weaver C.M. Impact of Equol-Producing Capacity and Soy-Isoflavone Profiles of Supplements on Bone Calcium Retention in Postmenopausal Women: A Randomized Crossover Trial. Am. J. Clin. Nutr. 2015;102:695–703. doi: 10.3945/ajcn.114.093906. PubMed DOI PMC

Nachvak S.M., Moradi S., Anjom-shoae J., Rahmani J., Nasiri M., Maleki V., Sadeghi O. Soy, Soy Isoflavones, and Protein Intake in Relation to Mortality from All Causes, Cancers, and Cardiovascular Diseases: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. J. Acad. Nutr. Diet. 2019;119:1483–1500. doi: 10.1016/j.jand.2019.04.011. PubMed DOI

Liu X.X., Li S.H., Chen J.Z., Sun K., Wang X.J., Wang X.G., Hui R.T. Effect of Soy Isoflavones on Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2012;22:463–470. doi: 10.1016/j.numecd.2010.09.006. PubMed DOI

Lu L.-J.W., Chen N.-W., Nayeem F., Nagamani M., Anderson K.E. Soy Isoflavones Interact with Calcium and Contribute to Blood Pressure Homeostasis in Women: A Randomized, Double-Blind, Placebo Controlled Trial. Eur. J. Nutr. 2020;59:2369–2381. doi: 10.1007/s00394-019-02085-3. PubMed DOI PMC

Man B., Cui C., Zhang X., Sugiyama D., Barinas-Mitchell E., Sekikawa A. The Effect of Soy Isoflavones on Arterial Stiffness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Nutr. 2021;60:603–614. doi: 10.1007/s00394-020-02300-6. PubMed DOI PMC

Sekikawa A., Ihara M., Lopez O., Kakuta C., Lopresti B., Higashiyama A., Aizenstein H., Chang Y.-F., Mathis C., Miyamoto Y., et al. Effect of S-Equol and Soy Isoflavones on Heart and Brain. Curr. Cardiol. Rev. 2019;15:114–135. doi: 10.2174/1573403X15666181205104717. PubMed DOI PMC

Yamagata K. Soy Isoflavones Inhibit Endothelial Cell Dysfunction and Prevent Cardiovascular Disease. J. Cardiovasc. Pharmacol. 2019;74:201–209. doi: 10.1097/FJC.0000000000000708. PubMed DOI

Migkos T., Pourova J., Voprsalova M., Auger C., Schini-Kerth V., Mladenka P. Biochanin A, the Most Potent of 16 Isoflavones, Induces Relaxation of the Coronary Artery Through the Calcium Channel and CGMP-Dependent Pathway. Planta Med. 2020;86:708–716. doi: 10.1055/a-1158-9422. PubMed DOI

Sahin I., Bilir B., Ali S., Sahin K., Kucuk O. Soy Isoflavones in Integrative Oncology: Increased Efficacy and Decreased Toxicity of Cancer Therapy. Integr. Cancer Ther. 2019;18:153473541983531. doi: 10.1177/1534735419835310. PubMed DOI PMC

Pabich M., Materska M. Biological Effect of Soy Isoflavones in the Prevention of Civilization Diseases. Nutrients. 2019;11:1660. doi: 10.3390/nu11071660. PubMed DOI PMC

Reger M.K., Zollinger T.W., Liu Z., Jones J.F., Zhang J. Dietary Intake of Isoflavones and Coumestrol and the Risk of Prostate Cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial: Dietary Phytoestrogens and Prostate Cancer. Int. J. Cancer. 2018;142:719–728. doi: 10.1002/ijc.31095. PubMed DOI

Zhang J., Ren L., Yu M., Liu X., Ma W., Huang L., Li X., Ye X. S-Equol Inhibits Proliferation and Promotes Apoptosis of Human Breast Cancer MCF-7 Cells via Regulating MiR-10a-5p and PI3K/AKT Pathway. Arch. Biochem. Biophys. 2019;672:108064. doi: 10.1016/j.abb.2019.108064. PubMed DOI

Atkinson C., Ray R.M., Li W., Lin M.-G., Gao D.L., Shannon J., Stalsberg H., Porter P.L., Frankenfeld C.L., Wähälä K., et al. Plasma Equol Concentration Is Not Associated with Breast Cancer and Fibrocystic Breast Conditions among Women in Shanghai, China. Nutr. Res. 2016;36:863–871. doi: 10.1016/j.nutres.2016.03.008. PubMed DOI PMC

Delgado L., Heckmann C.M., Di Pisa F., Gourlay L., Paradisi F. Release of Soybean Isoflavones by Using a Β-Glucosidase from Alicyclobacillus herb. ChemBioChem. 2020 doi: 10.1002/cbic.202000688. PubMed DOI PMC

Silva F., Lemos T.C., Sandôra D., Monteiro M., Perrone D. Fermentation of Soybean Meal Improves Isoflavone Metabolism after Soy Biscuit Consumption by Adults. J. Sci. Food Agric. 2020;100:2991–2998. doi: 10.1002/jsfa.10328. PubMed DOI

Marín L., Miguélez E.M., Villar C.J., Lombó F. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties. BioMed Res. Int. 2015:905215. doi: 10.1155/2015/905215. PubMed DOI PMC

Gaya P., Medina M., Sánchez-Jiménez A., Landete J. Phytoestrogen Metabolism by Adult Human Gut Microbiota. Molecules. 2016;21:1034. doi: 10.3390/molecules21081034. PubMed DOI PMC

Decroos K., Vanhemmens S., Cattoir S., Boon N., Verstraete W. Isolation and Characterisation of an Equol-Producing Mixed Microbial Culture from a Human Faecal Sample and Its Activity under Gastrointestinal Conditions. Arch. Microbiol. 2005;183:45–55. doi: 10.1007/s00203-004-0747-4. PubMed DOI

Choi E.J., Kim G.-H. The Antioxidant Activity of Daidzein Metabolites, O-Desmethylangolensin and Equol, in HepG2 Cells. Mol. Med. Rep. 2014;9:328–332. doi: 10.3892/mmr.2013.1752. PubMed DOI

Sánchez-Calvo J.M., Rodríguez-Iglesias M.A., Molinillo J.M.G., Macías F.A. Soy Isoflavones and Their Relationship with Microflora: Beneficial Effects on Human Health in Equol Producers. Phytochem Rev. 2013;12:979–1000. doi: 10.1007/s11101-013-9329-x. DOI

Braune A., Blaut M. Evaluation of Inter-Individual Differences in Gut Bacterial Isoflavone Bioactivation in Humans by PCR-Based Targeting of Genes Involved in Equol Formation. J. Appl. Microbiol. 2018;124:220–231. doi: 10.1111/jam.13616. PubMed DOI

Liang W., Zhao L., Zhang J., Fang X., Zhong Q., Liao Z., Wang J., Guo Y., Liang H., Wang L. Colonization Potential to Reconstitute a Microbe Community in Pseudo Germ-Free Mice After Fecal Microbe Transplant From Equol Producer. Front. Microbiol. 2020;11:1221. doi: 10.3389/fmicb.2020.01221. PubMed DOI PMC

Mayo B., Vázquez L., Flórez A.B. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients. 2019;11:2231. doi: 10.3390/nu11092231. PubMed DOI PMC

Njåstad K.M., Adler S.A., Hansen-Møller J., Thuen E., Gustavsson A.-M., Steinshamn H. Gastrointestinal Metabolism of Phytoestrogens in Lactating Dairy Cows Fed Silages with Different Botanical Composition. J. Dairy Sci. 2014;97:7735–7750. doi: 10.3168/jds.2014-8208. PubMed DOI

Mustonen E., Taponen S., Andersson M., Sukura A., Katila T., Taponen J. Fertility and Growth of Nulliparous Ewes after Feeding Red Clover Silage with High Phyto-Oestrogen Concentrations. Animal. 2014;8:1699–1705. doi: 10.1017/S175173111400161X. PubMed DOI

Kašparovská J., Dadáková K., Lochman J., Hadrová S., Křížová L., Kašparovský T. Changes in Equol and Major Soybean Isoflavone Contents during Processing and Storage of Yogurts Made from Control or Isoflavone-Enriched Bovine Milk Determined Using LC-MS (TOF) Analysis. Food Chem. 2017;222:67–73. doi: 10.1016/j.foodchem.2016.12.010. PubMed DOI

Lefevre A., Daems F., Focant M., Peeters J., Ninane V., Larondelle Y., Froidmont E. The Effect of Commonly Used Dairy Processing Techniques and Unit Operations on the Equol Content of Dairy Products. Int. Dairy J. 2019;93:30–34. doi: 10.1016/j.idairyj.2019.02.002. DOI

Trnková A., Šancová K., Zapletalová M., Kašparovská J., Dadáková K., Křížová L., Lochman J., Hadrová S., Ihnatová I., Kašparovský T. Determination of in Vitro Isoflavone Degradation in Rumen Fluid. J. Dairy Sci. 2018;101:5134–5144. doi: 10.3168/jds.2017-13610. PubMed DOI

Dadáková K., Trnková A., Kašparovská J., Křížová L., Lochman J., Kašparovský T. In Vitro Metabolism of Red Clover Isoflavones in Rumen Fluid. J. Anim. Physiol. Anim. Nutr. 2020;104:1647–1654. doi: 10.1111/jpn.13402. PubMed DOI

Kasparovska J., Krizova L., Lochman J., Dadakova K., Kasparovsky T. Soybean-Derived Isoflavone Determination in Rumen Fluid and Milk by LC–MS-(TOF) J. Chromatogr. Sci. 2016;54:997–1003. doi: 10.1093/chromsci/bmw033. PubMed DOI

Nørskov N.P., Givens I., Purup S., Stergiadis S. Concentrations of Phytoestrogens in Conventional, Organic and Free-Range Retail Milk in England. Food Chem. 2019;295:1–9. doi: 10.1016/j.foodchem.2019.05.081. PubMed DOI

Bláhová L., Kohoutek J., Procházková T., Prudíková M., Bláha L. Phytoestrogens in Milk: Overestimations Caused by Contamination of the Hydrolytic Enzyme Used during Sample Extraction. J. Dairy Sci. 2016;99:6973–6982. doi: 10.3168/jds.2016-10926. PubMed DOI

Clarke H.J., Griffin C., Rai D.K., O’Callaghan T.F., O’Sullivan M.G., Kerry J.P., Kilcawley K.N. Dietary Compounds Influencing the Sensorial, Volatile and Phytochemical Properties of Bovine Milk. Molecules. 2020;25:26. doi: 10.3390/molecules25010026. PubMed DOI PMC

Jungbauer A., Medjakovic S. Phytoestrogens and the Metabolic Syndrome. J. Steroid Biochem. Mol. Biol. 2014;139:277–289. doi: 10.1016/j.jsbmb.2012.12.009. PubMed DOI

Adler S.A., Purup S., Hansen-Møller J., Thuen E., Gustavsson A.-M., Steinshamn H. Phyto-Oestrogens and Their Metabolites in Milk Produced on Two Pastures with Different Botanical Compositions. Livest. Sci. 2014;163:62–68. doi: 10.1016/j.livsci.2014.02.006. DOI

Höjer A., Adler S., Purup S., Hansen-Møller J., Martinsson K., Steinshamn H., Gustavsson A.-M. Effects of Feeding Dairy Cows Different Legume-Grass Silages on Milk Phytoestrogen Concentration. J. Dairy Sci. 2012;95:4526–4540. doi: 10.3168/jds.2011-5226. PubMed DOI

Flachowsky G., Hünerberg M., Meyer U., Kammerer D.R., Carle R., Goerke M., Eklund M. Isoflavone Concentration of Soybean Meal from Various Origins and Transfer of Isoflavones into Milk of Dairy Cows. J. Verbrauch. Lebensm. 2011;6:449–456. doi: 10.1007/s00003-011-0702-7. DOI

Adler S.A., Purup S., Hansen-Møller J., Thuen E., Steinshamn H. Phytoestrogens and Their Metabolites in Bulk-Tank Milk: Effects of Farm Management and Season. PLoS ONE. 2015;10:e0127187. doi: 10.1371/journal.pone.0127187. PubMed DOI PMC

Duan T., Ma H., Dong Y., Yang F., Liu X. Microemulsion Liquid Chromatographic Method for Simultaneous Separation and Determination of Five Isoflavones in Red Clover. J. Liq. Chromatogr. Relat. Technol. 2021:1–8. doi: 10.1080/10826076.2020.1866599. DOI

Silva L.R., Pereira M.J., Azevedo J., Gonçalves R.F., Valentão P., de Pinho P.G., Andrade P.B. Glycine max (L.) Merr., Vigna radiata, L. and Medicago sativa, L. Sprouts: A Natural Source of Bioactive Compounds. Food Res. Int. 2013;50:167–175. doi: 10.1016/j.foodres.2012.10.025. DOI

Cornara L., Xiao J., Burlando B. Therapeutic Potential of Temperate Forage Legumes: A Review. Crit. Rev. Food Sci. Nutr. 2016;56:S149–S161. doi: 10.1080/10408398.2015.1038378. PubMed DOI

Król-Grzymała A., Amarowicz R. Phenolic Compounds of Soybean Seeds from Two European Countries and Their Antioxidant Properties. Molecules. 2020;25:2075. doi: 10.3390/molecules25092075. PubMed DOI PMC

Berhow M.A., Singh M., Bowman M.J., Price N.P.J., Vaughn S.F., Liu S.X. Quantitative NIR Determination of Isoflavone and Saponin Content of Ground Soybeans. Food Chem. 2020;317:126373. doi: 10.1016/j.foodchem.2020.126373. PubMed DOI

Kim E.-H., Lee O.-K., Kim J.K., Kim S.-L., Lee J., Kim S.-H., Chung I.-M. Isoflavones and Anthocyanins Analysis in Soybean (Glycine max (L.) Merill) from Three Different Planting Locations in Korea. Field Crop. Res. 2014;156:76–83. doi: 10.1016/j.fcr.2013.10.020. DOI

Du W., Yue Y., Tian X. Variation of Isoflavones Production in Red Clover as Related to Environment, Growth Stage and Year. Acta Aliment. 2012;41:211–220. doi: 10.1556/AAlim.41.2012.2.8. DOI

Lemežienė N., Padarauskas A., Butkutė B., Cesevičienė J., Taujenis L., Norkevičienė E., Norkevičienė E. The Concentration of Isoflavones in Red Clover (Trifolium pratense, L.) at Flowering Stage. Zemdirb. Agric. 2015;102:443–448. doi: 10.13080/z-a.2015.102.057. DOI

Wang X., Liu S., Yin X., Bellaloui N., McClure M.A., Mengistu A. Soybean Seed Isoflavones Respond Differentially to Phosphorus Applications in Low and High Phosphorus Soils. Nutr. Cycl. Agroecosyst. 2019;113:217–230. doi: 10.1007/s10705-019-09982-3. DOI

Sivesind E., Seguin P. Effects of the Environment, Cultivar, Maturity, and Preservation Method on Red Clover Isoflavone Concentration. J. Agric. Food Chem. 2005;53:6397–6402. doi: 10.1021/jf0507487. PubMed DOI

Sarelli L., Tuori M., Saastamoinen I., Syrjälä-qvist L., Saloniemi H. Phytoestrogen Content of Birdsfoot Trefoil and Red Clover: Effects of Growth Stage and Ensiling Method. Acta Agric. Scand. Sect. A Anim. Sci. 2003;53:58–63. doi: 10.1080/09064700310002053. DOI

Daems F., Decruyenaere V., Agneessens R., Lognay G., Romnee J.M., Froidmont É. Changes in the Isoflavone Concentration in Red Clover (Trifolium pratense, L.) during Ensiling and Storage in Laboratory-Scale Silos. Anim. Feed Sci. Technol. 2016;217:36–44. doi: 10.1016/j.anifeedsci.2016.04.008. DOI

Charmley E. Towards Improved Silage Quality—A Review. Can. J. Anim. Sci. 2001;81:157–168. doi: 10.4141/A00-066. DOI

Barnes S. The Biochemistry, Chemistry and Physiology of the Isoflavones in Soybeans and Their Food Products. Lymphat. Res. Biol. 2010;8:89–98. doi: 10.1089/lrb.2009.0030. PubMed DOI PMC

Dunford N.T. Advancements in Oil and Oilseed Processing. In: Dunford N.T., editor. Food and Industrial Bioproducts and Bioprocessing. Wiley-Blackwell; Oxford, UK: 2012. pp. 115–143.

Ferreira C.D., Ziegler V., Schwanz Goebel J.T., Hoffmann J.F., Carvalho I.R., Chaves F.C., de Oliveira M. Changes in Phenolic Acid and Isoflavone Contents during Soybean Drying and Storage. J. Agric. Food Chem. 2019;67:1146–1155. doi: 10.1021/acs.jafc.8b06808. PubMed DOI

Nan G., Shi J., Huang Y., Sun J., Lv J., Yang G., Li Y. Dissociation Constants and Solubilities of Daidzein and Genistein in Different Solvents. J. Chem. Eng. Data. 2014;59:1304–1311. doi: 10.1021/je4010905. DOI

Zhang J., Ge Y., Han F., Li B., Yan S., Sun J., Wang L. Isoflavone Content of Soybean Cultivars from Maturity Group 0 to VI Grown in Northern and Southern China. J. Am. Oil Chem. Soc. 2014;91:1019–1028. doi: 10.1007/s11746-014-2440-3. PubMed DOI PMC

Dickinson J.M., Smith G.R., Randel R.D., Pemberton I.J. In Vitro Metabolism of Formononetin and Biochanin A in Bovine Rumen Fluid. J. Anim. Sci. 1988;66:1969–1973. doi: 10.2527/jas1988.6681969x. PubMed DOI

Harlow B.E., Flythe M.D., Aiken G.E. Effect of Biochanin A on Corn Grain (Zea mays) Fermentation by Bovine Rumen Amylolytic Bacteria. J. Appl. Microbiol. 2017;122:870–880. doi: 10.1111/jam.13397. PubMed DOI

Harlow B.E., Flythe M.D., Aiken G.E. Biochanin A Improves Fibre Fermentation by Cellulolytic Bacteria. J. Appl. Microbiol. 2018;124:58–66. doi: 10.1111/jam.13632. PubMed DOI

Melchior E.A., Smith J.K., Schneider L.G., Mulliniks J.T., Bates G.E., Flythe M.D., Klotz J.L., Ji H., Goodman J.P., Lee A.R., et al. Effects of Endophyte-Infected Tall Fescue Seed and Red Clover Isoflavones on Rumen Microbial Populations and Physiological Parameters of Beef Cattle. Transl. Anim. Sci. 2018;3:315–328. doi: 10.1093/tas/txy147. PubMed DOI PMC

Steinshamn H., Purup S., Thuen E., Hansen-Møller J. Effects of Clover-Grass Silages and Concentrate Supplementation on the Content of Phytoestrogens in Dairy Cow Milk. J. Dairy Sci. 2008;91:2715–2725. doi: 10.3168/jds.2007-0857. PubMed DOI

Andersen C., Nielsen T.S., Purup S., Kristensen T., Eriksen J., Søegaard K., Sørensen J., Fretté X.C. Phyto-Oestrogens in Herbage and Milk from Cows Grazing White Clover, Red Clover, Lucerne or Chicory-Rich Pastures. Animal. 2009;3:1189–1195. doi: 10.1017/S1751731109004613. PubMed DOI

Třináctý J., Křížová L., Schulzová V., Hajšlová J., Hanuš O. The Effect of Feeding Soybean-Derived Phytoestogens on Their Concentration in Plasma and Milk of Lactating Dairy Cows. Arch. Anim. Nutr. 2009;63:219–229. doi: 10.1080/17450390902859739. DOI

Křížová L., Třináctý J., Hajšlová J., Havlíková Š. The Effect of Technological Processing on the Content of Isoflavones in Bovine Milk and Dairy Products. In: Ng T.-B., editor. Soybean-Applications and Technology. InTech; Rijeka, Croatia: 2011.

Piskula M.K., Yamakoshi J., Iwai Y. Daidzein and Genistein but Not Their Glucosides Are Absorbed from the Rat Stomach. FEBS Lett. 1999;447:287–291. doi: 10.1016/S0014-5793(99)00307-5. PubMed DOI

Kowalczyk-Zieba I., Woclawek-Potocka I., Piskula M.K., Piotrowska-Tomala K.K., Boruszewska D., Bah M.M., Siemieniuch M.J., Skarzynski D.J. Experimentally Induced Mastitis and Metritis Modulate Soy Bean Derived Isoflavone Biotransformation in Diary Cows. Theriogenology. 2011;76:1744–1755. doi: 10.1016/j.theriogenology.2011.07.010. PubMed DOI

Woclawek-Potocka I., Piskula M.K., Bah M., Siemieniuch M.J., Korzekwa A., Brzezicka E., Skarzynski D.J. Concentrations of Isoflavones and Their Metabolites in the Blood of Pregnant and Non-Pregnant Heifers Fed Soy Bean. J. Reprod. Dev. 2008;54:358–363. doi: 10.1262/jrd.20013. PubMed DOI

Mustonen E.A., Tuori M., Saastamoinen I., Taponen J., Wähälä K., Saloniemi H., Vanhatalo A. Equol in Milk of Dairy Cows Is Derived from Forage Legumes Such as Red Clover. Br. J. Nutr. 2009;102:1552–1556. doi: 10.1017/S0007114509990857. PubMed DOI

Křížová L., Veselý A., Třináctý J., Schulzová V., Hurajová A., Hajšlová J., Kvasničková E., Havlíková Š. Changes in Isoflavones Concentrations in Cheese during Processing and Ripening. Acta Univ. Agric. Silvic. Mendel. Brun. 2011;59:153–162. doi: 10.11118/actaun201159010153. DOI

Marazza J.A., Nazareno M.A., de Giori G.S., Garro M.S. Enhancement of the Antioxidant Capacity of Soymilk by Fermentation with Lactobacillus Rhamnosus. J. Funct. Foods. 2012;4:594–601. doi: 10.1016/j.jff.2012.03.005. DOI

Otieno D.O., Ashton J.F., Shah N.P. Stability of Isoflavone Phytoestrogens in Fermented Soymilk with Bifidobacterium Animalis Bb12 during Storage at Different Temperatures. Int. J. Food Sci. Technol. 2006;41:1182–1191. doi: 10.1111/j.1365-2621.2006.01177.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...