In vitro metabolism of red clover isoflavones in rumen fluid
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1575/2018
Support for biochemical research in 2019
PubMed
32542765
DOI
10.1111/jpn.13402
Knihovny.cz E-zdroje
- Klíčová slova
- Isoflavone, diet, equol, metabolism, rumen fluid,
- MeSH
- bachor MeSH
- dieta veterinární MeSH
- isoflavony * MeSH
- laktace MeSH
- skot MeSH
- Trifolium * MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- isoflavony * MeSH
The degradation of red clover isoflavones was studied in vitro using a rumen fluid buffer system. Various amounts of red clover extract (5-75 mg) together with hay or concentrate-rich diet were added to 40 ml of rumen fluid obtained from non-lactating and lactating dairy cows, respectively, and incubated for 0, 3, 6, 12 or 24 hr. Following incubation, concentrations of daidzein, genistein, formononetin, biochanin A and equol were determined in the samples. After 3 hr of incubation, isoflavone metabolism and equol production could be observed. The results obtained indicate that hay diet provides better conditions for isoflavone metabolism, as concentrations of daidzein, formononetin and biochanin A were higher in incubations based on the concentrate-rich diet and the production of equol was higher in incubations based on the hay diet. Furthermore, in incubations with higher amounts of added clover extract, a decrease in equol production was observed. Further studies are needed to clarify the role of adaptation of rumen microflora on isoflavone degradation kinetics and to clarify the interrelationship between various dietary factors, rumen microbiota and isoflavones. The knowledge of isoflavone metabolism kinetics in dependence on studied factors will be useful for the optimization of feeding dose.
Zobrazit více v PubMed
Adler, S. A., Purup, S., Hansen-Møller, J., Thuen, E., Gustavsson, A.-M., & Steinshamn, H. (2014). Phyto-oestrogens and their metabolites in milk produced on two pastures with different botanical compositions. Livestock Science, 163, 62-68. https://doi.org/10.1016/j.livsci.2014.02.006
Andersen, C., Nielsen, T. S., Purup, S., Kristensen, T., Eriksen, J., Søegaard, K., … Fretté, X. C. (2009). Phyto-oestrogens in herbage and milk from cows grazing white clover, red clover, lucerne or chicory-rich pastures. Animal, 3, 1189-1195. https://doi.org/10.1017/S1751731109004613
Chin, Y.-P., Tsui, K.-C., Chen, M.-C., Wang, C.-Y., Yang, C.-Y., & Lin, Y.-L. (2012). Bactericidal Activity of soymilk fermentation broth by in vitro and Animal Models. Journal of Medicinal Food, 15, 520-526. https://doi.org/10.1089/jmf.2011.1918
Daems, F., Decruyenaere, V., Agneessens, R., Lognay, G., Romnee, J. M., & Froidmont, É. (2016). Changes in the isoflavone concentration in red clover (Trifolium pratense L.) during ensiling and storage in laboratory-scale silos. Animal Feed Science and Technology, 217, 36-44. https://doi.org/10.1016/j.anifeedsci.2016.04.008
Daems, F., Jasselette, C., Romnee, J.-M., Planchon, V., Lognay, G., & Froidmont, É. (2015). Validating the use of an ultra-performance liquid chromatography with tandem mass spectrometry method to quantify equol in cow’s milk. Dairy Science & Technology, 95, 303-319. https://doi.org/10.1007/s13594-015-0209-6
Daems, F., Romnee, J.-M., Rasse, C., Froidmont, É., Heuskin, S., & Lognay, G. (2016). Quantification of four isoflavones in forages with UPLC®-MS/MS, using the Box-Behnken experimental design to optimize sample preparation. Chromatographia, 79, 711-725. https://doi.org/10.1007/s10337-016-3074-4
Decroos, K., Vanhemmens, S., Cattoir, S., Boon, N., & Verstraete, W. (2005). Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Archives of Microbiology, 183, 45-55. https://doi.org/10.1007/s00203-004-0747-4
Dickinson, J. M., Smith, G. R., Randel, R. D., & Pemberton, I. J. (1988). In vitro metabolism of formononetin and biochanin A in bovine rumen fluid. Journal of Animal Science, 66, 1969-1973. https://doi.org/10.2527/jas1988.6681969x
Flachowsky, G., Hünerberg, M., Meyer, U., Kammerer, D. R., Carle, R., Goerke, M., & Eklund, M. (2011). Isoflavone concentration of soybean meal from various origins and transfer of isoflavones into milk of dairy cows. Journal Für Verbraucherschutz Und Lebensmittelsicherheit, 6, 449-456. https://doi.org/10.1007/s00003-011-0702-7
Harlow, B. E., Flythe, M. D., & Aiken, G. E. (2017). Effect of biochanin A on corn grain (Zea mays) fermentation by bovine rumen amylolytic bacteria. Journal of Applied Microbiology, 122, 870-880. https://doi.org/10.1111/jam.13397
Harlow, B. E., Flythe, M. D., & Aiken, G. E. (2018). Biochanin A improves fibre fermentation by cellulolytic bacteria. Journal of Applied Microbiology, 124, 58-66. https://doi.org/10.1111/jam.13632
Kalač, P. (2013). Fresh and ensiled forages as a source of estrogenic equol in bovine milk: A review. Czech Journal of Animal Science, 58(7), 296-303. https://doi.org/10.17221/6859-CJAS
Kasparovska, J., Pecinkova, M., Dadakova, K., Krizova, L., Hadrova, S., Lexa, M., … Kasparovsky, T. (2016). Effects of isoflavone-enriched feed on the rumen microbiota in dairy cows. PLoS One, 11, e0154642. https://doi.org/10.1371/journal.pone.0154642
Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules, 24, 1076. https://doi.org/10.3390/molecules24061076
Liang, H., Xu, L., Zhao, X., Bai, J., Chen, Z., Zhou, S., … Qu, M. (2018). Effect of daidzein on fermentation parameters and bacterial community of finishing Xianan cattle. Italian Journal of Animal Science, 17, 950-958. https://doi.org/10.1080/1828051X.2018.1431965
Lipovac, M., Pfitscher, A., Hobiger, S., Laschitz, T., Hof, M., Chedraui, P., & Jungbauer, A. (2015). Red clover isoflavone metabolite bioavailability is decreased after fructooligosaccharide supplementation. Fitoterapia, 105, 93-101. https://doi.org/10.1016/j.fitote.2015.06.011
Luca, S. V., Macovei, I., Bujor, A., Miron, A., Skalicka-Woźniak, K., Aprotosoaie, A. C., & Trifan, A. (2019). Bioactivity of dietary polyphenols: The role of metabolites. Critical Reviews in Food Science and Nutrition, https://doi.org/10.1080/10408398.2018.1546669
Melchior, E. A., Smith, J. K., Schneider, L. G., Mulliniks, J. T., Bates, G. E., Flythe, M. D., … Myer, P. R. (2019). Effects of endophyte-infected tall fescue seed and red clover isoflavones on rumen microbial populations and physiological parameters of beef cattle. Translational Animal Science, 3, 315-328.
Melchior, E. A., Smith, J. K., Schneider, L. G., Mulliniks, J. T., Bates, G. E., McFarlane, Z. D., … Myer, P. R. (2018). Effects of red clover isoflavones on tall fescue seed fermentation and microbial populations in vitro. PLoS One, 13, e0201866. https://doi.org/10.1371/journal.pone.0201866
Njåstad, K. M., Adler, S. A., Hansen-Møller, J., Thuen, E., Gustavsson, A.-M., & Steinshamn, H. (2014). Gastrointestinal metabolism of phytoestrogens in lactating dairy cows fed silages with different botanical composition. Journal of Dairy Science, 97, 7735-7750. https://doi.org/10.3168/jds.2014-8208
Rodrigues, F., Almeida, I., Sarmento, B., Amaral, M. H., & Oliveira, M. B. P. P. (2014). Study of the isoflavone content of different extracts of Medicago spp. as potential active ingredient. Industrial Crops and Products, 57, 110-115. https://doi.org/10.1016/j.indcrop.2014.03.014
Saleem, F., Bouatra, S., Guo, A. C., Psychogios, N., Mandal, R., Dunn, S. M., … Wishart, D. S. (2013). The Bovine Ruminal Fluid Metabolome. Metabolomics, 9, 360-378. https://doi.org/10.1007/s11306-012-0458-9
Setchell, K. D. R., & Clerici, C. (2010). Equol: History, chemistry, and formation. The Journal of Nutrition, 140, 1355S-1362S. https://doi.org/10.3945/jn.109.119776
Setchell, K. D. R., & Cole, S. J. (2006). Method of defining equol-producer status and its frequency among vegetarians. The Journal of Nutrition, 136, 2188-2193. https://doi.org/10.1093/jn/136.8.2188
Shutt, D. A. (1976). The effects of plant oestrogens on animal reproduction. Endeavour, 35, 110-113. https://doi.org/10.1016/0160-9327(76)90004-1
Shutt, D., Weston, R., & Hogan, J. (1970). Quantitative aspects of phytooestrogen metabolism in sheep fed on subterranean clover (Trifolium subterraneum cultivar Clare) or red clover (Trifolium pratense). Australian Journal of Agricultural Research, 21, 713-722. https://doi.org/10.1071/AR9700713
Tajima, K., Aminov, R. I., Nagamine, T., Matsui, H., Nakamura, M., & Benno, Y. (2001). Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Applied and Environmental Microbiology, 67, 2766-2774. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
Tajima, K., Arai, S., Ogata, K., Nagamine, T., Matsui, H., Nakamura, M., … Benno, Y. (2000). Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 6, 273-284. https://doi.org/10.1006/anae.2000.0353
Trnková, A., Šancová, K., Zapletalová, M., Kašparovská, J., Dadáková, K., Křížová, L., … Kašparovský, T. (2018). Determination of in vitro isoflavone degradation in rumen fluid. Journal of Dairy Science, 101, 5134-5144. https://doi.org/10.3168/jds.2017-13610
Tsao, R., Papadopoulos, Y., Yang, R., Young, J. C., & McRae, K. (2006). Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. Journal of Agricultural and Food Chemistry, 54, 5797-5805. https://doi.org/10.1021/jf0614589
Tsen, S. Y., Siew, J., Lau, E. K. L., Afiqah bte Roslee, F., Chan, H. M., & Loke, W. M. (2014). Cow’s milk as a dietary source of equol and phenolic antioxidants: Differential distribution in the milk aqueous and lipid fractions. Dairy Science & Technology, 94, 625-632. https://doi.org/10.1007/s13594-014-0183-4
Verdrengh, M., Collins, L. V., Bergin, P., & Tarkowski, A. (2004). Phytoestrogen genistein as an anti-staphylococcal agent. Microbes and Infection, 6, 86-92. https://doi.org/10.1016/j.micinf.2003.10.005
Yu, O., Jung, W., Shi, J., Croes, R. A., Fader, G. M., McGonigle, B., & Odell, J. T. (2000). Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiology, 124, 781-794. https://doi.org/10.1104/pp.124.2.781
Yuan, J.-P., Wang, J.-H., & Liu, X. (2007). Metabolism of dietary soy isoflavones to equol by human intestinal microflora - implications for health. Molecular Nutrition & Food Research, 51, 765-781. https://doi.org/10.1002/mnfr.200600262
Zhao, X. H., Zhou, S., Bao, L. B., Song, X. Z., Ouyang, K. H., Xu, L. J., … Qu, M. (2018). Response of rumen bacterial diversity and fermentation parameters in beef cattle to diets containing supplemental daidzein. Italian Journal of Animal Science, 17, 643-649. https://doi.org/10.1080/1828051X.2017.1404943