Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
32393624
PubMed Central
PMC7275740
DOI
10.1073/pnas.1920816117
PII: 1920816117
Knihovny.cz E-zdroje
- Klíčová slova
- climate change, freezing damage, late frost, phenology, spring leaf-out,
- MeSH
- časoprostorová analýza MeSH
- fenotyp MeSH
- klimatické změny * MeSH
- lesy MeSH
- listy rostlin růst a vývoj MeSH
- nízká teplota * MeSH
- roční období * MeSH
- stromy růst a vývoj MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
- Severní Amerika MeSH
Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.
Agricultural High School Polytechnic Institute of Viseu 3500 606 Viseu Portugal
Białowieża Geobotanical Station Faculty of Biology University of Warsaw PL 17 230 Bialowieza Poland
Centre for Forest Research Université du Québec à Montréal Montreal H3C 3P8 Canada
Coordination Centre for Environmental Projects Polish State Forests 02 362 Warsaw Poland
Department of Biological Sciences University of Bergen 5020 Bergen Norway
Department of Botany Dr Harisingh Gour Vishwavidyalaya University Sagar Madhya Pradesh 470003 India
Department of Crop and Forest Sciences University of Lleida E25198 Lleida Spain
Department of Forest Resources University of Minnesota St Paul MN 55108
Department of Forest Sciences Seoul National University 08826 Seoul Republic of Korea
Department of Geomatics Forest Research Institute Sekocin Stary 05 090 Raszyn Poland
Faculty of Natural Resources Management Lakehead University Thunder Bay ON P7B 5E1 Canada
Global Change Research Institute Czech Academy of Sciences CZ 603 00 Brno Czech Republic
Hawkesbury Institute for the Environment Western Sydney University Penrith NSW 2753 Australia
Institute of BioEconomy National Research Council 50019 Florence Italy
Institute of Dendrology Polish Academy of Sciences PL 62 035 Kórnik Poland
Institute of Forest Ecosystem Research IFER CZ 254 01 Jilove u Prahy Czech Republic
Institute of Forestry and Rural Engineering Estonian University of Life Sciences 51006 Tartu Estonia
Institute of Integrative Biology ETH Zurich 8092 Zurich Switzerland
Institute of Integrative Biology ETH Zurich 8092 Zurich Switzerland;
National Center for Agro Meteorology 08826 Seoul Republic of Korea
National Forest Centre 96001 Zvolen Slovak Republic
School of Biological Sciences University of Bristol Bristol BS8 1TQ United Kingdom
School of Life Sciences Weihenstephan Technical University of Munich 85354 Freising Germany
Swiss Federal Institute for Forest Snow and Landscape Research WSL CH 8903 Birmensdorf Switzerland
Tartu Observatory University of Tartu 61602 Tõravere Estonia
Zobrazit více v PubMed
Reichstein M., et al. , Climate extremes and the carbon cycle. Nature 500, 287–295 (2013). PubMed
Ciais P., et al. , Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005). PubMed
Ummenhofer C. C., Meehl G. A., Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160135 (2017). PubMed PMC
Lobell D. B., Schlenker W., Costa-Roberts J., Climate trends and global crop production since 1980. Science 333, 616–620 (2011). PubMed
Field C. B., Barros V., Stocker T. F., Dahe Q., Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change, (Cambridge University Press, 2012).
Rosenzweig C., Iglesias A., Yang X. B., Epstein P. R., Chivian E., Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Change Hum. Health 2, 90–104 (2001).
Jeworrek T., “Media Information Extreme storms, wildfires and droughts cause heavy nat cat losses in 2018” (2019). https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjO__z0wvzoAhWN3KQKHY5hDGQQFjABegQIAxAB&url=https%3A%2F%2Fwww.munichre.com%2Fcontent%2Fdam%2Fmunichre%2Fglobal%2Fcontent-pieces%2Fdocuments%2Fnatcat-2018-global-20190107_en.pdf%2F_jcr_content%2Frenditions%2Foriginal.media_file.download_attachment.file%2Fnatcat-2018-global-20190107_en.pdf&usg=AOvVaw0_lO6uW9VTJ0As1EcE6K0y. Accessed 27 April 2020.
Hallegatte S., Hourcade J. C., Dumas P., Why economic dynamics matter in assessing climate change damages: Illustration on extreme events. Ecol. Econ. 62, 330–340 (2007).
Stott P., How climate change affects extreme weather events. Science 352, 1517–1518 (2016). PubMed
Körner C. et al. ., Where, why and how? Explaining the low-temperature range limits of temperate tree species. J. Ecol. 104, 1076–1088 (2016).
Kollas C., Körner C., Randin C. F., Spring frost and growing season length co-control the cold range limits of broad-leaved trees. J. Biogeogr. 41, 773–783 (2014).
Liu Q., et al. , Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018). PubMed PMC
Príncipe A., et al. , Low resistance but high resilience in growth of a major deciduous forest tree (Fagus sylvatica L.) in response to late spring frost in southern Germany. Trees (Berl.) 31, 743–751 (2017).
Zohner C. M., Rockinger A., Renner S. S., Increased autumn productivity permits temperate trees to compensate for spring frost damage. New Phytol. 221, 789–795 (2019). PubMed
Augspurger C. K., Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 94, 41–50 (2013). PubMed
Vitasse Y., et al. , Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Change Biol. 25, 3781–3792 (2019). PubMed
Vitasse Y., Lenz A., Körner C., The interaction between freezing tolerance and phenology in temperate deciduous trees. Front. Plant Sci. 5, 541 (2014). PubMed PMC
Zohner C. M., Mo L., Sebald V., Renner S. S., Leaf-out in northern ecotypes of wide-ranging trees requires less spring warming, enhancing the risk of spring frost damage at cold range limits. Glob. Ecol. Biogeogr., doi.org/10.1111/geb.13088 (2020).
Vitra A., Lenz A., Vitasse Y., Frost hardening and dehardening potential in temperate trees from winter to budburst. New Phytol. 216, 113–123 (2017). PubMed
Lenz A., Hoch G., Vitasse Y., Körner C., European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytol. 200, 1166–1175 (2013). PubMed
Snyder R. L., de Melo-Abreu J., Frost Protection: Fundamentals, Practice and Economics, (Cambridge University Press, 2005).
Papagiannaki K., Lagouvardos K., Kotroni V., Papagiannakis G., Agricultural losses related to frost events: Use of the 850 hPa level temperature as an explanatory variable of the damage cost. Nat. Hazards Earth Syst. Sci. 14, 2375–2381 (2014).
Faust E., Herbold J., Spring Frost Losses and Climate Change–Not a Contradiction in Terms, (Munich RE, 2018).
Hufkens K., et al. , Ecological impacts of a widespread frost event following early spring leaf-out. Glob. Change Biol. 18, 2365–2377 (2012).
Bascietto M., Bajocco S., Mazzenga F., Matteucci G., Assessing spring frost effects on beech forests in Central Apennines from remotely-sensed data. Agric. For. Meteorol. 248, 240–250 (2018).
Richardson A. D., et al. , Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371 (2018). PubMed
Vitasse Y., Schneider L., Rixen C., Christen D., Rebetez M., Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric. For. Meteorol. 248, 60–69 (2018).
Chamberlain C. J., Cook B. I., García de Cortázar-Atauri I., Wolkovich E. M., Rethinking false spring risk. Glob. Chang. Biol. 25, 2209–2220 (2019). PubMed PMC
Zohner C. M., Renner S. S., Innately shorter vegetation periods in North American species explain native-non-native phenological asymmetries. Nat. Ecol. Evol. 1, 1655–1660 (2017). PubMed
Zohner C. M., Benito B. M., Fridley J. D., Svenning J. C., Renner S. S., Spring predictability explains different leaf-out strategies in the woody floras of North America, Europe and East Asia. Ecol. Lett. 20, 452–460 (2017). PubMed
Körner C., Basler D., Phenology under global warming. Science 327, 1461–1462 (2010). PubMed
Breiman L., Random forests. Mach. Learn. 45, 5–32 (2001).
Desnoues E., Ferreira de Carvalho J., Zohner C. M., Crowther T. W., The relative roles of local climate adaptation and phylogeny in determining leaf-out timing of temperate tree species. For. Ecosyst. 4, 26 (2017).
Svenning J. C., Sandel B., Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013). PubMed
Renner S. S., Zohner C. M., Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).
Vitasse Y., Lenz A., Hoch G., Körner C., Earlier leaf-out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. J. Ecol. 102, 981–988 (2014).
Leuning R., Cremer K. W., Leaf temperatures during radiation frost Part I. Observations. Agric. For. Meteorol. 42, 121–133 (1988).
Olson D. M., et al. , Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933–938 (2001).
Gu L., et al. , The 2007 eastern US spring freeze: Increased cold damage in a warming world? Bioscience 58, 253–262 (2008).
Muffler L., et al. , Distribution ranges and spring phenology explain late frost sensitivity in 170 woody plants from the Northern Hemisphere. Glob. Ecol. Biogeogr. 25, 1061–1071 (2016).
Mann H. B., Nonparametric tests against trend. Econometrica 13, 245–259 (1945).
Kendall M. G., Rank Correlation Methods, (Griffin, 1948).
Fick S. E., Hijmans R. J., WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Gelman A., Hill J., Data Analysis Using Regression and Multilevel/hierarchical Models, (Cambridge University Press, 2007).
Panchen Z. A., et al. , Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. New Phytol. 203, 1208–1219 (2014). PubMed
Zohner C. M., Benito B. M., Svenning J. C., Renner S. S., Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Chang. 6, 1120–1123 (2016).
Steidinger B. S., et al. ; GFBI consortium , Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019). PubMed
Liang J., et al. , Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016). PubMed
Ministerio de Medio Ambiente. Dirección General de Conservación de la Naturaleza. 1997–2007. Tercer Inventario Forestal Nacional. Gobierno de España. https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/ifn3.aspx. Accessed 27 April 2020.
French National Forest Inventory , Data from “Institut National de l'information géographique et forestière, raw data, annual campaigns 2005 and following.” https://inventaire-forestier.ign.fr/spip.php?rubrique159. Accessed 1 January 2015.
Italian National Forest Inventory , Data from “National Inventory of Forests and Forest Carbon Pools (INFC).” https://inventarioforestale.org/. Accessed 27 April 2016.
Boyle B. et al. ., The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinf. 14, 16 (2013). PubMed PMC
R Development Core Team , R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017). http://www.R-project.org. Accessed 27 April 2020.
Cold-induced secondary dormancy and its regulatory mechanisms in Beta vulgaris