Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32853372
PubMed Central
PMC7515712
DOI
10.1093/nar/gkaa700
PII: 5898185
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfatasy genetika MeSH
- editace RNA MeSH
- fylogeneze MeSH
- genom mitochondriální MeSH
- guide RNA, Kinetoplastida genetika MeSH
- mitochondrie genetika MeSH
- podjednotky proteinů genetika MeSH
- protozoální DNA genetika MeSH
- RNA protozoální genetika MeSH
- Trypanosoma lewisi genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- guide RNA, Kinetoplastida MeSH
- podjednotky proteinů MeSH
- protozoální DNA MeSH
- RNA protozoální MeSH
Kinetoplastid flagellates are known for several unusual features, one of which is their complex mitochondrial genome, known as kinetoplast (k) DNA, composed of mutually catenated maxi- and minicircles. Trypanosoma lewisi is a member of the Stercorarian group of trypanosomes which is, based on human infections and experimental data, now considered a zoonotic pathogen. By assembling a total of 58 minicircle classes, which fall into two distinct categories, we describe a novel type of kDNA organization in T. lewisi. RNA-seq approaches allowed us to map the details of uridine insertion and deletion editing events upon the kDNA transcriptome. Moreover, sequencing of small RNA molecules enabled the identification of 169 unique guide (g) RNA genes, with two differently organized minicircle categories both encoding essential gRNAs. The unprecedented organization of minicircles and gRNAs in T. lewisi broadens our knowledge of the structure and expression of the mitochondrial genomes of these human and animal pathogens. Finally, a scenario describing the evolution of minicircles is presented.
Zobrazit více v PubMed
Hoare C.A. The Trypanosomes of Mammals: A Zoological Monograph. 1972; Oxford and Edinburgh: Blackwell Scientific Publications.
Plummer H.G. Blood parasites. Science. 1913; 38:724–730. PubMed
Truc P., Buscher P., Cuny G., Gonzatti M.I., Jannin J., Joshi P., Juyal P., Lun Z.R., Mattioli R., Pays E. et al. .. Atypical human infections by animal trypanosomes. PLoS Negl. Trop. Dis. 2013; 7:e2256. PubMed PMC
Shah I., Ali U., Andankar P., Joshi R.. Trypanosomiasis in an infant from India. J. Vector Borne Dis. 2011; 48:122–123. PubMed
Shrivastava K.K., Shrivastava G.P.. Two cases of Trypanosoma (Herpetosoma) species infection of man in India. Trans. R. Soc. Trop. Med. Hyg. 1974; 68:143–144. PubMed
Bharodiya D., Singhal T., Kasodariya G.S., Banerjee P.S., Garg R.. Trypanosomiasis in a Young Infant from Rural Gujarat, India. Indian Pediatr. 2018; 55:69–70. PubMed
Johnson P. D. A case of fection by Trypanosoma lewisi in a child. Trans. R. Soc. Trop. Med. Hyg. 1933; 26:467–468.
Doke P.P., Kar A.. A fatal case of Trypanosoma lewesi in Maharashtra, India. Ann. Trop. Med. Public Health. 2011; 4:91–95.
Howie S., Guy M., Fleming L., Bailey W., Noyes H., Faye J.A., Pepin J., Greenwood B., Whittle H., Molyneux D. et al. .. A Gambian infant with fever and an unexpected blood film. PLoS Med. 2006; 3:e355. PubMed PMC
Sarataphan N., Vongpakorn M., Nuansrichay B., Autarkool N., Keowkarnkah T., Rodtian P., Stich R.W., Jittapalapong S.. Diagnosis of a Trypanosoma lewisi-like (Herpetosoma) infection in a sick infant from Thailand. J. Med. Microbiol. 2007; 56:1118–1121. PubMed PMC
Verma A., Manchanda S., Kumar N., Sharma A., Goel M., Banerjee P.S., Garg R., Singh B.P., Balharbi F., Lejon V. et al. .. Trypanosoma lewisi or T. lewisi-like infection in a 37-day-old Indian infant. Am. J. Trop. Med. Hyg. 2011; 85:221–224. PubMed PMC
Lun Z.R., Wen Y.Z., Uzureau P., Lecordier L., Lai D.H., Lan Y.G., Desquesnes M., Geng G.Q., Yang T.B., Zhou W.L. et al. .. Resistance to normal human serum reveals Trypanosoma lewisi as an underestimated human pathogen. Mol. Biochem. Parasitol. 2015; 199:58–61. PubMed
Dewar C.E., MacGregor P., Cooper S., Gould M.K., Matthews K.R., Savill N.J., Schnaufer A.. Mitochondrial DNA is critical for longevity and metabolism of transmission stage Trypanosoma brucei. PLoS Pathog. 2018; 14:e1007195. PubMed PMC
Hines J.C., Ray D.S.. A mitochondrial DNA primase is essential for cell growth and kinetoplast DNA replication in Trypanosoma brucei. Mol. Cell Biol. 2010; 30:1319–1328. PubMed PMC
Mensa-Wilmot K., Hoffman B., Wiedeman J., Sullenberger C., Sharma A.. Kinetoplast Division Factors in a Trypanosome. Trends Parasitol. 2019; 35:119–128. PubMed PMC
Lukeš J., Wheeler R., Jirsová D., David V., Archibald J.M.. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018; 70:1267–1274. PubMed PMC
Lukeš J., Hashimi H., Zíková A.. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr. Genet. 2005; 48:277–299. PubMed
Aphasizhev R., Aphasizheva I.. Mitochondrial RNA editing in trypanosomes: small RNAs in control. Biochimie. 2014; 100:125–131. PubMed PMC
Seiwert S.D., Stuart K.. RNA editing: transfer of genetic information from gRNA to precursor mRNA in vitro. Science. 1994; 266:114–117. PubMed
Golden D.E., Hajduk S.L.. The 3′-untranslated region of cytochrome oxidase II mRNA functions in RNA editing of African trypanosomes exclusively as a cis guide RNA. RNA. 2005; 11:29–37. PubMed PMC
Cooper S., Wadsworth E.S., Ochsenreiter T., Ivens A., Savill N.J., Schnaufer A.. Assembly and annotation of the mitochondrial minicircle genome of a differentiation-competent strain of Trypanosoma brucei. Nucleic Acids Res. 2019; 47:11304–11325. PubMed PMC
Kirby L.E., Sun Y., Judah D., Nowak S., Koslowsky D.. Analysis of the Trypanosoma brucei EATRO 164 bloodstream guide RNA transcriptome. PLoS Negl. Trop. Dis. 2016; 10:e0004793. PubMed PMC
Aphasizheva I., Alfonzo J., Carnes J., Cestari I., Cruz-Reyes J., Göringer H.U., Hajduk S., Lukeš J., Madison-Antenucci S., Maslov D.A. et al. .. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 2020; 36:337–355. PubMed PMC
Simpson R.M., Bruno A.E., Chen R., Lott K., Tylec B.L., Bard J.E., Sun Y., Buck M.J., Read L.K.. Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization. Nucleic. Acids. Res. 2017; 45:7965–7983. PubMed PMC
Aphasizheva I., Aphasizhev R.. U-insertion/deletion mRNA-editing holoenzyme: definition in sight. Trends Parasitol. 2016; 32:144–156. PubMed PMC
McDermott S.M., Luo J., Carnes J., Ranish J.A., Stuart K.. The architecture of Trypanosoma brucei editosomes. Proc. Natl. Acad. Sci. U.S.A. 2016; 113:E6476–E6485. PubMed PMC
Hong M., Simpson L.. Genomic organization of Trypanosoma brucei kinetoplast DNA minicircles. Protist. 2003; 154:265–279. PubMed
Greif G., Rodriguez M., Reyna-Bello A., Robello C., Alvarez-Valin F.. Kinetoplast adaptations in American strains from Trypanosoma vivax. Mutat. Res. 2015; 773:69–82. PubMed
Yurchenko V., Hobza R., Benada O., Lukeš J.. Trypanosoma avium: large minicircles in the kinetoplast DNA. Exp. Parasitol. 1999; 92:215–218. PubMed
Ochsenreiter T., Cipriano M., Hajduk S.L.. KISS: the kinetoplastid RNA editing sequence search tool. RNA. 2007; 13:1–4. PubMed PMC
Koslowsky D., Sun Y., Hindenach J., Theisen T., Lucas J.. The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic. Acids. Res. 2014; 42:1873–1886. PubMed PMC
Ray D.S. Conserved sequence blocks in kinetoplast minicircles from diverse species of trypanosomes. Mol. Cell Biol. 1989; 9:1365–1367. PubMed PMC
Hizver J., Rozenberg H., Frolow F., Rabinovich D., Shakked Z.. DNA bending by an adenine–thymine tract and its role in gene regulation. Proc. Natl. Acad. Sci. U.S A. 2001; 98:8490–8495. PubMed PMC
Lin R.H., Lai D.H., Zheng L.L., Wu J., Lukeš J., Hide G., Lun Z.R.. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen. Parasit. Vectors. 2015; 8:665. PubMed PMC
Ponzi M., Birago C., Battaglia P.A.. Two identical symmetrical regions in the minicircle structure of Trypanosoma lewisi kinetoplast DNA. Mol. Biochem. Parasitol. 1984; 13:111–119. PubMed
Behr M.A., Mathews S.A., D’Alesandro P.A.. A medium for the continuous cultivation of bloodstream forms of Trypanosoma lewisi at 37 C. J. Parasitol. 1990; 76:711–716. PubMed
Antipov D., Hartwick N., Shen M., Raiko M., Lapidus A., Pevzner P.A.. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics. 2016; 32:3380–3387. PubMed
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011; 28:2731–2739. PubMed PMC
Quail M.A., Smith M., Coupland P., Otto T.D., Harris S.R., Connor T.R., Bertoni A., Swerdlow H.P., Gu Y.. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012; 13:341. PubMed PMC
Koren S., Walenz B.P., Berlin K., Miller J.R., Bergman N.H., Phillippy A.M.. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017; 27:722–736. PubMed PMC
Crooks G.E., Hon G., Chandonia J.M., Brenner S.E.. WebLogo: a sequence logo generator. Genome Res. 2004; 14:1188–1190. PubMed PMC
Aphasizheva I., Maslov D., Wang X., Huang L., Aphasizhev R.. Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes. Mol. Cell. 2011; 42:106–117. PubMed PMC
Langmead B., Salzberg S.L.. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012; 9:357–359. PubMed PMC
Gerasimov E.S., Gasparyan A.A., Kaurov I., Tichy B., Logacheva M.D., Kolesnikov A.A., Lukes J., Yurchenko V., Zimmer S.L., Flegontov P.. Trypanosomatid mitochondrial RNA editing: dramatically complex transcript repertoires revealed with a dedicated mapping tool. Nucleic. Acids. Res. 2018; 46:765–781. PubMed PMC
Kim D., Langmead B., Salzberg S.L.. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015; 12:357–360. PubMed PMC
Avila H.A., Simpson L.. Organization and complexity of minicircle-encoded guide RNAs in Trypanosoma cruzi. RNA. 1995; 1:939–947. PubMed PMC
Brewster S., Barker D.C.. The ATPase subunit 6 gene sequence predicts that RNA editing is conserved between lizard- and human-infecting Leishmania. Gene. 1999; 235:77–84. PubMed
Flegontov P.N., Guo Q., Ren L., Strelkova M.V., Kolesnikov A.A.. Conserved repeats in the kinetoplast maxicircle divergent region of Leishmania sp. and Leptomonas seymouri. Mol. Genet. Genomics. 2006; 276:322–333. PubMed
Fu G., Lambson B., Barker D.. Characterisation of kinetoplast DNA minicircles from Herpetomonas samuelpessoai. FEMS Microbiol. Lett. 1999; 172:65–71. PubMed
Blom D., de Haan A., van den Burg J., van den Berg M., Sloof P., Jirků M., Lukeš J., Benne R.. Mitochondrial minicircles in the free-living bodonid Bodo saltans contain two gRNA gene cassettes and are not found in large networks. RNA. 2000; 6:121–135. PubMed PMC
Štolba P., Jirků M., Lukeš J.. Polykinetoplast DNA structure in Dimastigella trypaniformis and Dimastigella mimosa (Kinetoplastida). Mol. Biochem. Parasitol. 2001; 113:323–326. PubMed
Zíková A., Vancová M., Jirků M., Lukeš J.. Cruzella marina (Bodonina, Kinetoplastida): non-catenated structure of poly-kinetoplast DNA. Exp. Parasitol. 2003; 104:159–161. PubMed
Yasuhira S., Simpson L.. Guide RNAs and guide RNA genes in the cryptobiid kinetoplastid protozoan. Trypanoplasma Borreli. RNA. 1996; 2:1153–1160. PubMed PMC
Lukeš J., Jirků M., Avliyakulov N., Benada O.. Pankinetoplast DNA structure in a primitive bodonid flagellate, CryptobiaHelicis. EMBO J. 1998; 17:838–846. PubMed PMC
Higgins D.G., Bleasby A.J., Fuchs R.. CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci. 1992; 8:189–191. PubMed
Yurchenko V., Kolesnikov A.A., Lukeš J.. Phylogenetic analysis of Trypanosomatina (Protozoa: Kinetoplastida) based on minicircle conserved regions. Folia Parasitol. (Praha). 2000; 47:1–5. PubMed
Simpson L. The genomic organization of guide RNA genes in kinetoplastid protozoa: several conundrums and their solutions. Mol. Biochem. Parasitol. 1997; 86:133–141. PubMed
Ochsenreiter T., Hajduk S.L.. Alternative editing of cytochrome c oxidase III mRNA in trypanosome mitochondria generates protein diversity. EMBO Rep. 2006; 7:1128–1133. PubMed PMC
Jasmer D.P., Stuart K.. Sequence organization in African trypanosome minicircles is defined by 18 base pair inverted repeats. Mol. Biochem. Parasitol. 1986; 18:321–331. PubMed
Lukeš J., Guilbride D.L., Votýpka J., Zíková A., Benne R., Englund P.T.. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot. Cell. 2002; 1:495–502. PubMed PMC
Zhang X., Li S.J., Li Z., He C.Y., Hide G., Lai D.H., Lun Z.R.. Cell cycle and cleavage events during in vitro cultivation of bloodstream forms of Trypanosoma lewisi, a zoonotic pathogen. Cell Cycle. 2019; 18:552–567. PubMed PMC
Costanzo G., Birago C., Battaglia P.A.. Bent helical structure in Trypanosoma lewisi minicircles. Cell Bio. Int. Rep. 1988; 12:867–876. PubMed
Brewster S., Barker D.C.. Analysis of minicircle classes in Leishmania (Viannia) species. Trans. R. Soc. Trop. Med. Hyg. 2002; 96:S55–S63. PubMed
Kidane G.Z., Hughes D., Simpson L.. Sequence heterogeneity and anomalous electrophoretic mobility of kinetoplast minicircle DNA from Leishmania tarentolae. Gene. 1984; 27:265–277. PubMed
Simpson L., Douglass S.M., Lake J.A., Pellegrini M., Li F.. Comparison of the mitochondrial genomes and steady state transcriptomes of two strains of the trypanosomatid parasite Leishmania tarentolae. PLoS Negl. Trop. Dis. 2015; 9:e0003841. PubMed PMC
Junqueira A.C., Degrave W., Brandao A.. Minicircle organization and diversity in Trypanosoma cruzi populations. Trends Parasitol. 2005; 21:270–272. PubMed
Vallejo G.A., Macedo A.M., Chiari E., Pena S.D.. Kinetoplast DNA from Trypanosoma rangeli contains two distinct classes of minicircles with different size and molecular organization. Mol. Biochem. Parasitol. 1994; 67:245–253. PubMed
Botero A., Kapeller I., Cooper C., Clode P.L., Shlomai J., Thompson R.C.A.. The kinetoplast DNA of the Australian trypanosome, Trypanosoma copemani, shares features with Trypanosoma cruzi and Trypanosoma lewisi. Int. J. Parasitol. 2018; 48:691–700. PubMed
Kaufer A., Stark D., Ellis J.. Evolutionary insight into the Trypanosomatidae using alignment-free phylogenomics of the kinetoplast. Pathogens. 2019; 8:E157. PubMed PMC
Lukeš J., Skalický T., Týč J., Votýpka J., Yurchenko V.. Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 2014; 195:115–122. PubMed
Mafie E., Saito-Ito A., Kasai M., Hatta M., Rivera P.T., Ma X.H., Chen E.R., Sato H., Takada N.. Integrative taxonomic approach of trypanosomes in the blood of rodents and soricids in Asian countries, with the description of three new species. Parasitol. Res. 2019; 118:97–109. PubMed
Austen J.M., Ryan U.M., Friend J.A., Ditcham W.G., Reid S.A.. Vector of Trypanosoma copemani identified as Ixodes sp. Parasitology. 2011; 138:866–872. PubMed
Devera R., Fernandes O., Coura J.R.. Should Trypanosoma cruzi be called ‘cruzi’ complex? a review of the parasite diversity and the potential of selecting population after in vitro culturing and mice infection. Mem. Inst. Oswaldo Cruz. 2003; 98:1–12. PubMed
Briones M.R., Souto R.P., Stolf B.S., Zingales B.. The evolution of two Trypanosoma cruzi subgroups inferred from rRNA genes can be correlated with the interchange of American mammalian faunas in the Cenozoic and has implications to pathogenicity and host specificity. Mol. Biochem. Parasitol. 1999; 104:219–232. PubMed
Blom D., de Haan A., van den Berg M., Sloof P., Jirku M., Lukeš J., Benne R.. RNA editing in the free-living bodonid Bodo saltans. Nucleic. Acids. Res. 1998; 26:1205–1213. PubMed PMC
Jensen R.E., Englund P.T.. Network news: the replication of kinetoplast DNA. Annu. Rev. Microbiol. 2012; 66:473–491. PubMed
Elias M.C., da Cunha J.P., de Faria F.P., Mortara R.A., Freymuller E., Schenkman S.. Morphological events during the Trypanosoma cruzi cell cycle. Protist. 2007; 158:147–157. PubMed
Wheeler R.J., Gluenz E., Gull K.. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol. Microbiol. 2011; 79:647–662. PubMed PMC
Cosgrove W.B., Skeen M.J.. The cell cycle in Crithidia fasciculata. Temporal relationships between synthesis of deoxyribonucleic acid in the nucleus and in the kinetoplast. J. Protozool. 1970; 17:172–177. PubMed
Woodward R., Gull K.. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J. Cell Sci. 1990; 95:49–57. PubMed
Jakob M., Hoffmann A., Amodeo S., Peitsch C., Zuber B., Ochsenreiter T.. Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. Sci. Rep. 2016; 6:36565. PubMed PMC
Henriksson J., Aslund L., Pettersson U.. Karyotype variability in Trypanosoma cruzi. Parasiol. Today. 1996; 12:108–114. PubMed
Rogers W.O., Wirth D.F.. Generation of sequence diversity in the kinetoplast DNA minicircles of Leishmania mexicana amazonensis. Mol. Biochem. Parasitol. 1988; 30:1–8. PubMed
Borst P., van der Ploeg M., van Hoek J.F., Tas J., James J.. On the DNA content and ploidy of trypanosomes. Mol. Biochem. Parasitol. 1982; 6:13–23. PubMed
Guilbride D.L., Englund P.T.. The replication mechanism of kinetoplast DNA networks in several trypanosomatid species. J. Cell Sci. 1998; 111:675–679. PubMed
Birkenmeyer L., Sugisaki H., Ray D.S.. Structural characterization of site-specific discontinuities associated with replication origins of minicircle DNA from Crithidia fasciculata. J. Biol. Chem. 1987; 262:2384–2392. PubMed
Ntambi J.M., Englund P.T.. A gap at a unique location in newly replicated kinetoplast DNA minicircles from Trypanosoma equiperdum. J. Biol. Chem. 1985; 260:5574–5579. PubMed
Onn I., Kapeller I., Abu-Elneel K., Shlomai J.. Binding of the universal minicircle sequence binding protein at the kinetoplast DNA replication origin. J. Biol. Chem. 2006; 281:37468–37476. PubMed
Hines J.C., Ray D.S.. Structure of discontinuities in kinetoplast DNA-associated minicircles during S phase in Crithidia fasciculata. Nucleic. Acids. Res. 2008; 36:444–450. PubMed PMC
Simpson L., Thiemann O.H., Savill N.J., Alfonzo J.D., Maslov D.A.. Evolution of RNA editing in trypanosome mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:6986–6993. PubMed PMC
Savill N.J., Higgs P.G.. A theoretical study of random segregation of minicircles in trypanosomatids. Proc. Biol. Sci. 1999; 266:611–620. PubMed PMC
Mitochondrial RNA editing in Trypanoplasma borreli: New tools, new revelations
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?
Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses