• This record comes from PubMed

Impact of proteostasis workload on sensitivity to proteasome inhibitors in multiple myeloma

. 2025 May 26 ; 25 (1) : 176. [epub] 20250526

Language English Country Italy Media electronic

Document type Journal Article, Review

Grant support
GA22-16389S Grantová Agentura České Republiky
LX22NPO5103 National Institute Virology and Bacteriology (Program EXCELES)

Links

PubMed 40418254
PubMed Central PMC12106538
DOI 10.1007/s10238-025-01713-z
PII: 10.1007/s10238-025-01713-z
Knihovny.cz E-resources

Genomic alterations and enormous monoclonal immunoglobulin production cause multiple myeloma to heavily depend on proteostasis mechanisms, including protein folding and degradation. These findings support the use of proteasome inhibitors for treating multiple myeloma and mantle cell lymphoma. Myeloma treatment has evolved, especially with the availability of new drugs, such as proteasome inhibitors, into therapeutic strategies for both frontline and relapsed/refractory disease settings. However, proteasome inhibitors are generally not effective enough to cure most patients. Natural resistance and eventual acquired resistance led to relapsed/refractory disease and poor prognosis. Advances in the understanding of cellular proteostasis and the development of innovative drugs that also target other proteostasis network components offer opportunities to exploit the intrinsic vulnerability of myeloma cells. This review outlines recent findings on the molecular mechanisms regulating cellular proteostasis pathways, as well as resistance, sensitivity, and escape strategies developed against proteasome inhibitors and provides a rationale and examples for novel combinations of proteasome inhibitors with FDA-approved drugs and investigational drugs targeting the NRF1 (NFE2L1)-mediated proteasome bounce-back response, redox homeostasis, heat shock response, unfolding protein response, autophagy, and VCP/p97 to increase proteotoxic stress, which can improve the efficacy of antimyeloma therapy based on proteasome inhibitors.

See more in PubMed

Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. Nat Rev Dis Primers. 2017;3:17046. 10.1038/nrdp.2017.46. PubMed

Bianchi G, Anderson KC. Understanding biology to tackle the disease: Multiple myeloma from bench to bedside, and back. CA Cancer J Clin. 2014;64(6):422–44. 10.3322/caac.21252. PubMed

Bianchi G, Oliva L, Cascio P, et al. The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition. Blood. 2009;113(13):3040–9. 10.1182/blood-2008-08-172734. PubMed

Meister S, Schubert U, Neubert K, et al. Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res. 2007;67(4):1783–92. 10.1158/0008-5472.CAN-06-2258. PubMed

Qian SB, Princiotta MF, Bennink JR, Yewdell JW. Characterization of rapidly degraded polypeptides in mammalian cells reveals a novel layer of nascent protein quality control. J Biol Chem. 2006;281(1):392–400. 10.1074/jbc.M509126200. PubMed

Schubert U, Antón LC, Gibbs J, et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature. 2000;404(6779):770–4. 10.1038/35008096. PubMed

Dobson CM. Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol. 2004;15:3–16. 10.1016/j.semcdb.2003.12.008. PubMed

Ruggiano A, Foresti O, Carvalho P. Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol. 2014;204(6):869–79. 10.1083/jcb.201312042. PubMed PMC

Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol. 2019;218(10):3171–87. 10.1083/jcb.201906047. PubMed PMC

Benbrook DM, Long A. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol. 2012;34:286–97. PubMed

Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6. 10.1126/science.1209038. PubMed

Dou QP, Zonder JA. Overview of proteasome inhibitor-based anticancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets. 2014;14(6):517–36. 10.2174/1568009614666140804154511. PubMed PMC

Cenci S, Oliva L, Cerruti F, et al. Pivotal Advance: Protein synthesis modulates responsiveness of differentiating and malignant plasma cells to proteasome inhibitors. J Leukoc Biol. 2012;92(5):921–31. 10.1189/jlb.1011497. PubMed

Schmidt M, Finley D. Regulation of proteasome activity in health and disease. Biochim Biophys Acta. 2014;1843(1):13–25. 10.1016/j.bbamcr.2013.08.012. PubMed PMC

Moreau P, Richardson PG, Cavo M, et al. Proteasome inhibitors in multiple myeloma: 10 years later. Blood. 2012;120(5):947–59. 10.1182/blood-2012-04-403733. PubMed PMC

Dick LR, Fleming PE. Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov Today. 2010;15(5–6):243–9. 10.1016/j.drudis.2010.01.008. PubMed

Buac D, Shen M, Schmitt S, et al. From bortezomib to other inhibitors of the proteasome and beyond. Curr Pharm Des. 2013;19(22):4025–38. 10.2174/1381612811319220012. PubMed PMC

Anderson KC. Therapeutic advances in relapsed or refractory multiple myeloma. J Natl Compr Canc Netw. 2013;11(5 Suppl):676–9. 10.6004/jnccn.2013.0199. PubMed

Argyriou AA, Iconomou G, Kalofonos HP. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood. 2008;112(5):1593–9. 10.1182/blood-2008-04-149385. PubMed

Nooka A, Gleason C, Casbourne D, Lonial S. Relapsed and refractory lymphoid neoplasms and multiple myeloma with a focus on carfilzomib. Biologics. 2013;7:13–32. 10.2147/BTT.S24580. PubMed PMC

Kuhn DJ, Orlowski RZ, Bjorklund CC. Second generation proteasome inhibitors: carfilzomib and immunoproteasome-specific inhibitors (IPSIs) Curr. Cancer Drug Targets. 2011;11(3):285–95. 10.2174/156800911794519725. PubMed

Thompson JL. Carfilzomib: a second-generation proteasome inhibitor for the treatment of relapsed and refractory multiple myeloma. Ann Pharmacother. 2013;47(1):56–62. 10.1345/aph.1R561. PubMed

Potts BC, Albitar MX, Anderson KC, et al. Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinicaltrials. Curr Cancer Drug Targets. 2011;11(3):254–84. 10.2174/156800911794519716. PubMed PMC

Cenci S, Mezghrani A, Cascio P, et al. Progressively impaired proteasomal capacity during terminal plasma cell differentiation. EMBO J. 2006;25(5):1104–13. 10.1038/sj.emboj.7601009. PubMed PMC

Cascio P, Oliva L, Cerruti F, et al. Dampening Ab responses using proteasome inhibitors following in vivo B-cell activation. Eur J Immunol. 2008;38(3):658–67. 10.1002/eji.200737743. PubMed

Neubert K, Meister S, Moser K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med. 2008;14(7):748–55. 10.1038/nm1763. PubMed

Vdovin A, Jelinek T, Zihala D, et al. The deubiquitinase OTUD1 regulates immunoglobulin production and proteasome inhibitor sensitivity in multiple myeloma. Nat Commun. 2022;13(1):6820. 10.1038/s41467-022-34654-2. PubMed PMC

Obeng EA, Carlson LM, Gutman DM, et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107(12):4907–16. 10.1182/blood-2005-08-3531. PubMed PMC

Rückrich T, Kraus M, Gogel J, et al. Characterization of the ubiquitin-proteasome system in bortezomib-adapted cells. Leukemia. 2009;23(6):1098–105. 10.1038/leu.2009.8. PubMed

Shabaneh TB, Downey SL, Goddard AL, et al. Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib. PLoS ONE. 2013;8(2): e56132. 10.1371/journal.pone.0056132. PubMed PMC

Paiva B, Puig N, Cedena MT, et al. Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia. 2017;31(2):382–92. 10.1038/leu.2016. PubMed PMC

Chaidos A, Barnes CP, Cowan G, et al. Clinical drug resistance linked to interconvertible phenotypic and functional states of tumor-propagating cells in multiple myeloma. Blood. 2013;121(2):318–28. 10.1182/blood-2012-06-436220. PubMed

Sha Z, Goldberg AL. Multiple myeloma cells are exceptionally sensitive to heat shock, which overwhelms their proteostasis network and induces apoptosis. Proc Natl Acad Sci U S A. 2020;117(35):21588–97. 10.1073/pnas.2001323117. PubMed PMC

Leung-Hagesteijn C, Erdmann N, Cheung G, et al. Xbp1s-negative tumor B cells and preplasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell. 2013;24(3):541–2. 10.1016/j.ccell.2015.09.010. PubMed

Driessen C, Müller R, Novak U, et al. Promising activity of nelfinavir-bortezomib-dexamethasone in proteasome inhibitor-refractory multiple myeloma. Blood. 2018;132(19):2097–100. 10.1182/blood-2018-05-851170. PubMed PMC

Sontag EM, Vonk WIM, Frydman J. Sorting out the trash: the spatial nature of eukaryotic protein quality control. Curr Opin Cell Biol. 2014;26:139–46. 10.1016/j.ceb.2013.12.006. PubMed PMC

Verma R, Mohl D, Deshaies RJ. Harnessing the power of proteolysis for targeted protein inactivation. Mol Cell. 2020;77:446–60. 10.1016/j.molcel.2020.01.010. PubMed

Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352:2487–98. 10.1056/NEJMoa043445. PubMed

Cenci S, van Anken E, Sitia R. Proteostenosis and plasma cell pathophysiology. Curr Opin Cell Biol. 2011;23(2):216–22. 10.1016/j.ceb.2010.11.004. PubMed

Zhou X, Besse A, Peter J, et al. High-dose carfilzomib achieves superior antitumour activity over lowdose and recaptures response in relapsed/refractory multiple myeloma resistant to low-dose carfilzomib by coinhibiting the β2 and β1 subunits of the proteasome complex. Haematologica. 2023;108(6):1628–39. 10.3324/haematol.2022.282225. PubMed PMC

Collins GA, Goldberg AL. The Logic of the 26S Proteasome. Cell. 2017;169(5):792–806. 10.1016/j.cell.2017.04.023. PubMed PMC

Koizumi S, Hamazaki J, Murata S. Transcriptional regulation of the 26S proteasome by Nrf1. Proc Jpn Acad Ser B Phys Biol Sci. 2018;94(8):325–36. 10.2183/pjab.94.021. PubMed PMC

Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, et al. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res. 2016;26(8):869–85. 10.1038/cr.2016.86. PubMed PMC

Kamber Kaya HE, Radhakrishnan SK. Trash talk: mammalian proteasome regulation at the transcriptional level. Trends Genet. 2021;37(2):160–73. 10.1016/j.tig.2020.09.005. PubMed PMC

Radhakrishnan SK, Lee CS, Young P, et al. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell. 2010;38(1):17–28. 10.1016/j.molcel.2010.02.029. PubMed PMC

Steffen J, Seeger M, Koch A, Krüger E. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol Cell. 2010;40(1):147–58. 10.1016/j.molcel.2010.09.012. PubMed

Baird L, Tsujita T, Kobayashi EH, et al. A homeostatic shift facilitates endoplasmic reticulum proteostasis through transcriptional integration of proteostatic stress response pathways. Mol Cell Biol. 2017;37(4):e00439-e516. 10.1128/MCB.00439-16. PubMed PMC

Hirotsu Y, Katsuoka F, Funayama R, et al. Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res. 2012;40(20):10228–39. 10.1093/nar/gks827. PubMed PMC

Vomund S, Schäfer A, Parnham MJ, et al. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017;18(12):2772. 10.3390/ijms18122772. PubMed PMC

Kobayashi A, Tsukide T, Miyasaka T, et al. Central nervous system-specific deletion of transcription factor Nrf1 causes progressive motor neuronal dysfunction. Genes Cells. 2011;16(6):692–703. 10.1111/j.1365-2443.2011.01522.x. PubMed

Lee CS, Lee C, Hu T, et al. Loss of nuclear factor E2-related factor 1 in the brain leads to dysregulation of proteasome gene expression and neurodegeneration. Proc Natl Acad Sci U S A. 2011;108(20):8408–13. 10.1073/pnas.1019209108. PubMed PMC

Lee CS, Ho DV, Chan JY. Nuclear factor-erythroid 2-related factor 1 regulates expression of proteasome genes in hepatocytes and protects against endoplasmic reticulum stress and steatosis in mice. FEBS J. 2013;280(15):3609–20. 10.1111/febs.12350. PubMed PMC

Villaescusa JC, Li B, Toledo EM, et al. A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson’s disease. EMBO J. 2016;35(18):1963–78. 10.15252/embj.201593725. PubMed PMC

Nath SR, Yu Z, Gipson TA, et al. Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. J Clin Invest. 2018;128(8):630–3641. 10.1172/JCI99042. PubMed PMC

Hamazaki J, Murata S. ER-resident transcription factor Nrf1 regulates proteasome expression and beyond. Int J Mol Sci. 2020;21(10):3683. 10.3390/ijms21103683. PubMed PMC

Koizumi S, Irie T, Hirayama S, et al. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. Elife. 2016;5: e18357. 10.7554/eLife.18357. PubMed PMC

Vangala JR, Radhakrishnan SK. Nrf1-mediated transcriptional regulation of the proteasome requires a functional TIP60 complex. J Biol Chem. 2019;294(6):2036–45. 10.1074/jbc.RA118.006290. PubMed PMC

Sha Z, Goldberg AL. Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr Biol. 2014;24(14):1573–83. 10.1016/j.cub.2014.06.004. PubMed PMC

Weyburne ES, Wilkins OM, Sha Z, et al. Inhibition of the proteasome β2 site sensitizes triple-negative breast cancer cells to β5 inhibitors and suppresses Nrf1 activation. Cell Chem Biol. 2017;24(2):218–30. 10.1016/j.chembiol.2016.12.016. PubMed PMC

Besse A, Besse L, Kraus M, et al. Proteasome inhibition in multiple myeloma: head-to-head comparison of currently available proteasome inhibitors. Cell Chem Biol. 2019;26(3):340-351.e3. 10.1016/j.chembiol.2018.11.007. PubMed

Ruvkun G, Lehrbach N. Regulation and functions of the ER-associated Nrf1 transcription factor. Cold Spring Harb Perspect Biol. 2023;15(1): a041266. 10.1101/cshperspect.a041266. PubMed PMC

Oerlemans R, Franke NE, Assaraf YG, et al. Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood. 2008;112(6):2489–99. 10.1182/blood-2007-08-104950. PubMed

Downey-Kopyscinski SL, Srinivasa S, Kisselev AF. A clinically relevant pulse treatment generates a bortezomib-resistant myeloma cell line that lacks proteasome mutations and is sensitive to Bcl-2 inhibitor venetoclax. Sci Rep. 2022;12(1):12788. 10.1038/s41598-022-17239-3. PubMed PMC

Northrop A, Byers HA, Radhakrishnan SK. Regulation of NRF1, a master transcription factor of proteasome genes: implications for cancer and neurodegeneration. Mol Biol Cell. 2020;31(20):2158–63. 10.1091/mbc.E20-04-0238. PubMed PMC

Northrop A, Vangala JR, Feygin A, Radhakrishnan SK. Disabling the protease DDI2 attenuates the transcriptional activity of NRF1 and potentiates proteasome inhibitor cytotoxicity. Int J Mol Sci. 2020;21(1):327. 10.3390/ijms21010327. PubMed PMC

Chen T, Ho M, Briere J, et al. Multiple myeloma cells depend on the DDI2/NRF1-mediated proteasome stress response for survival. Blood Adv. 2022;6(2):429–40. 10.1182/bloodadvances.2020003820. PubMed PMC

Fassmannová D, Sedlák F, Sedláček J, et al. Nelfinavir inhibits the TCF11/Nrf1-mediated proteasome recovery pathway in multiple myeloma. Cancers. 2020;12(5):1065. 10.3390/cancers12051065. PubMed PMC

Op M, Ribeiro ST, Chavarria C, et al. The aspartyl protease DDI2 drives adaptation to proteasome inhibition in multiple myeloma. Cell Death Dis. 2022;13(5):475. 10.1038/s41419-022-04925-3. PubMed PMC

Dirac-Svejstrup AB, Walker J, Faull P, et al. DDI2 is a ubiquitin-directed endoprotease responsible for cleavage of transcription factor NRF1. Mol Cell. 2020;79(2):332–41. 10.1016/j.molcel.2020.05.035. PubMed PMC

Gu Y, Wang X, Wang Y, et al. Nelfinavir inhibits human DDI2 and potentiates cytotoxicity of proteasome inhibitors. Cell Signal. 2020;75: 109775. 10.1016/j.cellsig.2020.109775. PubMed

Tomlin FM, Gerling-Driessen UIM, Liu YC, et al. Inhibition of NGLY1 inactivates the transcription factor Nrf1 and potentiates proteasome inhibitor cytotoxicity. ACS Cent Sci. 2017;3(11):1143–55. 10.1021/acscentsci.7b00224. PubMed PMC

Liu H, May K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs. 2012;4(1):17–23. 10.4161/mabs.4.1.18347. PubMed PMC

Shimizu Y, Hendershot LM. Oxidative folding: cellular strategies for dealing with the resultant equimolar production of reactive oxygen species. Antioxid Redox Signal. 2009;11(9):2317–31. 10.1089/ars.2009.2501. PubMed PMC

Cenci S, Sitia R. Managing and exploiting stress in the antibody factory. FEBS Lett. 2007;581(19):3652–7. 10.1016/j.febslet.2007.04.031. PubMed

Hendershot LM, Sitia R. Immunoglobulin assembly and secretion. Molecular Biology of B cells. Elsevier Inc.; 2003. p. 261–73.

Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem. 2004;279(19):20108–17. 10.1074/jbc.M314219200. PubMed

Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33. 10.1016/s1097-2765(03)00105-9. PubMed

Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21(3):396–413. 10.1089/ars.2014.5851. PubMed PMC

Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci U S A. 2003;100(17):9946–51. 10.1073/pnas.1334037100. PubMed PMC

Starheim KK, Holien T, Misund K, et al. Intracellular glutathione determines bortezomib cytotoxicity in multiple myeloma cells. Blood Cancer J. 2016;6(7): e446. 10.1038/bcj.2016.56. PubMed PMC

Besse L, Besse A, Mendez-Lopez M, et al. (2019) A metabolic switch in proteasome inhibitor-resistant multiple myeloma ensures higher mitochondrial metabolism, protein folding and sphingomyelin synthesis. Haematologica. 2019;104(9):e415–9. 10.3324/haematol.2018.207704. PubMed PMC

Maharjan S, Oku M, Tsuda M, et al. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci Rep. 2014;4:5896. 10.1038/srep05896. PubMed PMC

Goel A, Spitz DR, Weiner GJ. Manipulation of cellular redox parameters for improving therapeutic responses in B-cell lymphoma and multiple myeloma. J Cell Biochem. 2012;113(2):419–25. 10.1002/jcb.23387. PubMed PMC

Pérez-Galán P, Roué G, Villamor N, et al. The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood. 2006;107(1):257–64. 10.1182/blood-2005-05-2091. PubMed

Ling YH, Liebes L, Zou Y, Perez-Soler R. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem. 2003;278(36):33714–23. 10.1074/jbc.M302559200. PubMed

Llobet D, Eritja N, Encinas M, et al. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells. Anticancer Drugs. 2008;19(2):115–24. 10.1097/CAD.0b013e3282f24031. PubMed

Gao L, Gao M, Yang G, et al. Synergistic activity of carfilzomib and panobinostat in multiple myeloma cells via modulation of ROS generation and ERK1/2. Biomed Res Int. 2015;2015: 459052. 10.1155/2015/459052. PubMed PMC

Laubach JP, Moreau P, San-Miguel JF, Richardson PG. Panobinostat for the treatment of multiple myeloma. Clin Cancer Res. 2015;21(21):4767–73. 10.1158/1078-0432.CCR-15-0530. PubMed

Bruzzese F, Pucci B, Milone MR, et al. Panobinostat synergizes with zoledronic acid in prostate cancer and multiple myeloma models by increasing ROS and modulating mevalonate and p38-MAPK pathways. Cell Death Dis. 2013;4(10): e878. 10.1038/cddis.2013.406. PubMed PMC

Pei XY, Dai Y, Grant S. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res. 2004;10(11):3839–52. 10.1158/1078-0432.CCR-03-0561. PubMed

Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell. 2018;34(1):21–43. 10.1016/j.ccell.2018.03.022. PubMed PMC

Yen CH, Hsiao HH. NRF2 is one of the players involved in bone marrow mediated drug resistance in multiple myeloma. Int J Mol Sci. 2018;19(11):3503. 10.3390/ijms19113503. PubMed PMC

Stessman HA, Baughn LB, Sarver A, et al. Profiling bortezomib resistance identifies secondary therapies in a mouse myeloma model. Mol Cancer Ther. 2013;12(6):1140–50. 10.1158/1535-7163.MCT-12-1151. PubMed PMC

Jiang T, Harder B, Rojo de la Vega M, et al. p62 links autophagy and Nrf2 signaling. Free Radic Biol Med. 2015;88(Pt B):199–204. 10.1016/j.freeradbiomed.2015.06.014. PubMed PMC

Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 2013;83(6):199–204. 10.1016/j.freeradbiomed.2015.06.014. PubMed PMC

Weniger MA, Rizzatti EG, Pérez-Galán P, et al. Treatment-induced oxidative stress and cellular antioxidant capacity determine response to bortezomib in mantle cell lymphoma. Clin Cancer Res. 2011;17(15):5101–12. 10.1158/1078-0432.CCR-10-3367. PubMed PMC

Riz I, Hawley TS, Marsal JW, Hawley RG. Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming. Oncotarget. 2016;7(41):66360–85. 10.18632/oncotarget.11960. PubMed PMC

Pickering AM, Linder RA, Zhang H, et al. Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress. J Biol Chem. 2012;287(13):10021–31. 10.1074/jbc.M111.277145. PubMed PMC

Li B, Fu J, Chen P, et al. The nuclear factor (Erythroid-derived 2)-like 2 and proteasome maturation protein axis mediate bortezomib resistance in multiple myeloma. J Biol Chem. 2015;290(50):29854–68. 10.1074/jbc.M115.664953. PubMed PMC

Sun Y, Abdul Aziz A, Bowles K, Rushworth S. High NRF2 expression controls endoplasmic reticulum stress induced apoptosis in multiple myeloma. Cancer Lett. 2018;412:37–45. 10.1016/j.canlet.2017.10.005. PubMed

Yen CH, Hsu CM, Hsiao SY, Hsiao HH. Pathogenic mechanisms of myeloma bone disease and possible roles for NRF2. Int J Mol Sci. 2020;21(18):6723. 10.3390/ijms21186723. PubMed PMC

Chen F, Wang H, Zhu J, et al. Camptothecin suppresses NRF2-ARE activity and sensitises hepatocellular carcinoma cells to anticancer drugs. Br J Cancer. 2017;117(10):1495–506. 10.1038/bjc.2017.317. PubMed PMC

Singh A, Venkannagari S, Oh KH, et al. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 2016;11(11):3214–25. 10.1021/acschembio.6b00651. PubMed PMC

Roh JL, Jang H, Kim EH, Shin D. Targeting of the glutathione, thioredoxin, and Nrf2 antioxidant systems in head and neck cancer. Antioxid Redox Signal. 2017;27(2):106–14. 10.1089/ars.2016.6841. PubMed

Tew KD, Townsend DM. Regulatory functions of glutathione S-transferase P1–1 unrelated to detoxification. Drug Metab Rev. 2011;43(2):179–93. 10.3109/03602532.2011.552912. PubMed PMC

Tew KD, Townsend DM. Redox platforms in cancer drug discovery and development. Curr Opin Chem Biol. 2011;15(1):156–61. 10.1016/j.cbpa.2010.10.016. PubMed PMC

Nerini-Molteni S, Ferrarini M, Cozza S, et al. Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib. Br J Haematol. 2008;141(4):494–503. 10.1111/j.1365-2141.2008.07066.x. PubMed

Kiziltepe T, Hideshima T, Ishitsuka K, et al. JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood. 2007;110(2):709–18. 10.1182/blood-2006-10-052845. PubMed PMC

Zügel U, Kaufmann SH. Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev. 1999;12(1):19–39. 10.1128/CMR.12.1.19. PubMed PMC

Shah SP, Nooka AK, Jaye DL, et al. Bortezomib-induced heat shock response protects multiple myeloma cells and is activated by heat shock factor 1 serine 326 phosphorylation. Oncotarget. 2016;7(37):59727–41. 10.18632/oncotarget.10847. PubMed PMC

Dai C, Sampson SB. HSF1: Guardian of Proteostasis in Cancer. Trends Cell Biol. 2016;26(1):17–28. 10.1016/j.tcb.2015.10.011. PubMed PMC

Triandafillou CG, Drummond DA. Heat shock factor 1: From fire chief to crowd-control specialist. Mol Cell. 2016;63:1–2. 10.1016/j.molcel.2016.06.026. PubMed

Zhang L, Fok JH, Davies FE. Heat shock proteins in multiple myeloma. Oncotarget. 2014;5:1132–48. 10.18632/oncotarget.1584. PubMed PMC

Huang L, Wang Y, Bai J, et al. Blockade of HSP70 by VER-155008 synergistically enhances bortezomib-induced cytotoxicity in multiple myeloma. Cell Stress Chaperones. 2020;25(2):357–67. 10.1007/s12192-020-01078-0. PubMed PMC

Oroń M, Grochowski M, Jaiswar A, et al. The molecular network of the proteasome machinery inhibition response is orchestrated by HSP70, revealing vulnerabilities in cancer cells. Cell Rep. 2022;40(13): 111428. 10.1016/j.celrep.2022.111428. PubMed

Sharma C, Seo YH. Small molecule inhibitors of HSF1-activated pathways as potential next-generation anticancer therapeutics. Molecules. 2018;23(11):2757. 10.3390/molecules23112757. PubMed PMC

Fok JHL, Hedayat S, Zhang L, et al. HSF1 is essential for myeloma cell survival and a promising therapeutic target. Clin Cancer Res. 2018;24(10):2395–407. 10.1158/1078-0432.CCR-17-1594. PubMed PMC

Edkins AL, Price JT, Pockley AG, Blatch GL. Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738):20160521. 10.1098/rstb.2016.0521. PubMed PMC

Agarraberes FA, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol. 1997;137:825–34. 10.1083/jcb.137.4.825. PubMed PMC

Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 2018;19(6):365–81. 10.1038/s41580-018-0001-6. PubMed PMC

Lacey T, Lacey H. Linking hsp90’s role as an evolutionary capacitator to the development of cancer. Cancer Treat Res Commun. 2021;28: 100400. 10.1016/j.ctarc.2021.100400. PubMed

Garcia-carbonero R, Carnero A, Paz-ares L. Inhibition of HSP90 molecular chaperones: moving into the clinic. Lancet Oncol. 2013;14:e358–69. 10.1016/S1470-2045(13)70169-4. PubMed

Boysen M, Kityk R, Mayer MP. Hsp70- and Hsp90-mediated regulation of the conformation of p53 DNA binding domain and p53 cancer variants. Mol Cell. 2019;74(4):831-843.e4. 10.1016/j.molcel.2019.03.032. PubMed

Chatterjee M, Andrulis M, Stühmer T, et al. The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica. 2013;98:1132–41. 10.3324/haematol.2012.066175. PubMed PMC

Braunstein MJ, Scott SS, Scott CM, et al. Antimyeloma effects of the heat shock protein 70 molecular chaperone inhibitor MAL3-101. J Oncol. 2011;2011: 232037. 10.1155/2011/232037. PubMed PMC

Mimnaugh EG, Xu W, Vos M, et al. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther. 2004;3:551–66. PubMed

Sydor JR, Normant E, Pien CS, et al. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci U S A. 2006;103:17408–13. 10.1073/pnas.0608372103. PubMed PMC

Ishii T, Seike T, Nakashima T, et al. Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib. Blood Cancer J. 2012;2(4): e68. 10.1038/bcj.2012.13. PubMed PMC

Lamottke B, Kaiser M, Mieth M, et al. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur J Haematol. 2012;88:406–15. 10.1111/j.1600-0609.2012.01764.x. PubMed

Stühmer T, Zöllinger A, Siegmund D, et al. Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia. 2008;22:1604–12. 10.1038/leu.2008.111. PubMed

Usmani SZ, Bona RD, Chiosis G, Li Z. The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1. J Hematol Oncol. 2010;3:40. 10.1186/1756-8722-3-40. PubMed PMC

Bailey CK, Budina-Kolomets A, Murphy ME, Nefedova Y. Efficacy of the HSP70 inhibitor PET-16 in multiple myeloma. Cancer Biol Ther. 2015;16:1422–6. 10.1080/15384047.2015.1071743. PubMed PMC

Seggewiss-Bernhardt R, Bargou RC, Goh YT, et al. Phase 1/1B trial of the heat shock protein 90 inhibitor NVP- AUY922 as monotherapy or in combination with bortezomib in patients with relapsed or refractory multiple myeloma. Cancer. 2015;121:2185–92. 10.1002/cncr.29339. PubMed

Richardson PG, Chanan-Khan AA, Alsina M, et al. Tanespimycin monotherapy in relapsed multiple myeloma: results of a phase 1 dose-escalation study. Br J Haematol. 2010;150:438–45. 10.1111/j.1365-2141.2010.08265.x. PubMed PMC

Siegel D, Jagannath S, Vesole DH, et al. A phase 1 study of IPI-504 (retaspimycin hydrochloride) in patients with relapsed or relapsed and refractory multiple myeloma. Leuk Lymphoma. 2011;52:2308–15. 10.3109/10428194.2011.600481. PubMed

Altun M, Galardy PJ, Shringarpure R, et al. Effects of PS-341 on the activity and composition of proteasomes in multiple myeloma cells. Cancer Res. 2005;65:7896–901. 10.1158/0008-5472.CAN-05-0506. PubMed

Jain S, Diefenbach C, Zain J, O’Connor OA. Emerging role of carfilzomib in treatment of relapsed and refractory lymphoid neoplasms and multiple myeloma. Core Evid. 2011;6:43–57. 10.2147/CE.S13838. PubMed PMC

Nawrocki ST, Carew JS, Maclean KH, et al. Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood. 2008;112:2917–26. 10.1182/blood-2007-12-130823. PubMed PMC

Zhang L, Fok JJ, Mirabella F, et al. Hsp70 inhibition induces myeloma cell death via the intracellular accumulation of immunoglobulin and the generation of proteotoxic stress. Cancer Lett. 2013;339:49–59. 10.1016/j.canlet.2013.07.023. PubMed PMC

Ferguson ID, Lin YT, Lam C, et al. Allosteric HSP70 inhibitors perturb mitochondrial proteostasis and overcome proteasome inhibitor resistance in multiple myeloma. Cell Chem Biol. 2022;29(8):1288-1302.e7. 10.1016/j.chembiol.2022.06.010. PubMed PMC

Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med. 2020;383(16):1564–76. 10.1056/NEJMra2022774. PubMed

Milan E, Fabbri M, Cenci S. Autophagy in plasma cell ontogeny and malignancy. J Clin Immunol. 2016;36(Suppl 1):18–24. 10.1007/s10875-016-0254-9. PubMed PMC

Günther A, Baumann P, Burger R, et al. Activity of everolimus (RAD001) in relapsed and/or refractory multiple myeloma: a phase I study. Haematologica. 2015;100(4):541–7. 10.3324/haematol.2014.116269. PubMed PMC

Yee AJ, Hari P, Marcheselli R, et al. Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide. Br J Haematol. 2014;166:401–9. 10.1111/bjh.12909. PubMed

Ding WX, Ni HM, Gao W, et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol. 2007;171:513–24. 10.2353/ajpath.2007.070188. PubMed PMC

Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14:230–9. 10.1038/sj.cdd.4401984. PubMed

Hoang B, Benavides A, Shi Y, et al. Effect of autophagy on multiple myeloma cell viability. Mol Cancer Ther. 2009;8:1974–84. 10.1158/1535-7163.MCT-08-1177. PubMed

Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;169(2):361–71. 10.1016/j.cell.2017.03.035. PubMed

Milan E, Perini T, Resnati M, et al. A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy. 2015;11(7):1161–78. 10.1080/15548627.2015.1052928. PubMed PMC

Sha Z, Schnell HM, Ruoff K, Goldberg A. Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. J Cell Biol. 2018;217(5):1757–76. 10.1083/jcb.201708168. PubMed PMC

Hatanaka A, Nakada S, Matsumoto G, et al. The transcription factor NRF1 (NFE2L1) activates aggrephagy by inducing p62 and GABARAPL1 after proteasome inhibition to maintain proteostasis. Sci Rep. 2023;13(1):14405. 10.1038/s41598-023-41492-9. PubMed PMC

Ward MA, Vangala JR, Kamber Kaya HE, et al. Transcription factor Nrf1 regulates proteotoxic stress-induced autophagy. J Cell Biol. 2024;223(6): e202306150. 10.1083/jcb.202306150. PubMed PMC

Roy M, Liang L, Xiao X, et al. Lycorine downregulates HMGB1 to inhibit autophagy and enhances bortezomib activity in multiple myeloma. Theranostics. 2016;6(12):2209–24. 10.7150/thno.15584. PubMed PMC

Tang P, Yu Z, Sun H, et al. CRIP1 involves the pathogenesis of multiple myeloma via dual-regulation of proteasome and autophagy. EBioMedicine. 2024;100: 104961. 10.1016/j.ebiom.2023.104961. PubMed PMC

Lu Y, Wang Y, Xu H, et al. Profilin 1 induces drug resistance through Beclin1 complex-mediated autophagy in multiple myeloma. Cancer Sci. 2018;109(9):2706–16. 10.1111/cas.13711. PubMed PMC

Vogl DT, Stadtmauer EA, Tan KS, et al. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy. 2014;10(8):1380–90. 10.4161/auto.29264. PubMed PMC

Baranowska K, Misund K, Starheim KK, et al. Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells. Oncotarget. 2016;7(43):70845–56. 10.18632/oncotarget.12226. PubMed PMC

Kawaguchi T, Miyazawa K, Moriya S, et al. Combined treatment with bortezomib plus bafilomycin A1 enhances the cytocidal effect and induces endoplasmic reticulum stress in U266 myeloma cells: crosstalk among proteasome, autophagy-lysosome and ER stress. Int J Oncol. 2011;38(3):643–54. 10.3892/ijo.2010.882. PubMed

Al-Odat OS, Guirguis DA, Schmalbach NK, et al. Autophagy and apoptosis: current challenges of treatment and drug resistance in multiple myeloma. Int J Mol Sci. 2022;24(1):644. 10.3390/ijms24010644. PubMed PMC

Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102. 10.1038/nrm3270. PubMed

Read A, Schröder M. The unfolded protein response: an overview. Biology. 2021;10(5):384. 10.3390/biology10050384. PubMed PMC

Ajoolabady A, Lebeaupin C, Wu NN, et al. ER stress and inflammation crosstalk in obesity. Med Res Rev. 2023;43(1):5–30. 10.1002/med.21921. PubMed

Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res. 2005;569(1–2):29–63. 10.1016/j.mrfmmm.2004.06.056. PubMed

Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115(10):2656–64. 10.1172/JCI26373. PubMed PMC

Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):352. 10.1038/s41392-023-01570-w. PubMed PMC

Hollien J. (2013) Evolution of the unfolded protein response. Biochim Biophys Acta. 1833;11:2458–63. 10.1016/j.bbamcr.2013.01.016. PubMed

Davenport EL, Moore HE, Dunlop AS, et al. Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood. 2007;110(7):2641–9. 10.1182/blood-2006-11-053728. PubMed

Nikesitch N, Lee JM, Ling S, Roberts TL. Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin Transl Immunol. 2018;7(1): e1007. 10.1002/cti2.1007. PubMed PMC

Bertolotti A, Zhang Y, Hendershot LM, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2(6):326–32. 10.1038/35014014. PubMed

Harding HP, Zhang Y, Bertolotti A, et al. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 2000;5(5):897–904. 10.1016/s1097-2765(00)80330-5. PubMed

McConkey DJ. The integrated stress response and proteotoxicity in cancer therapy. Biochem Biophys Res Commun. 2017;482(3):450–3. 10.1016/j.bbrc.2016.11.047. PubMed PMC

Pakos-Zebrucka K, Koryga I, Mnich K, et al. The integrated stress response. EMBO Rep. 2016;17(10):1374–95. 10.15252/embr.201642195. PubMed PMC

Neill G, Masson GR. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci. 2023;16:1112253. 10.3389/fnmol.2023.1112253. PubMed PMC

Ranganathan AC, Ojha S, Kourtidis A, et al. Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res. 2008;68(9):3260–8. 10.1158/0008-5472.CAN-07-6215. PubMed PMC

Ho Y, Li X, Jamison S, et al. PERK activation promotes medulloblastoma tumorigenesis by attenuating premalignant granule cell precursor apoptosis. Am J Pathol. 2016;186(7):1939–51. 10.1016/j.ajpath.2016.03.004. PubMed PMC

Stone S, Ho Y, Li X, et al. Dual role of the integrated stress response in medulloblastoma tumorigenesis. Oncotarget. 2016;7(39):64124–35. 10.18632/oncotarget.11873. PubMed PMC

Shi Z, Yu X, Yuan M, et al. Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells. Sci Rep. 2019;9(1):3210. 10.1038/s41598-019-39547-x. PubMed PMC

Salaroglio IC, Panada E, Moiso E, et al. PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. Mol Cancer. 2017;16(1):91. 10.1186/s12943-017-0657-0. PubMed PMC

Bahar E, Kim JY, Yoon H. Chemotherapy resistance explained through endoplasmic reticulum stress-dependent signaling. Cancers. 2019;11(3):338. 10.3390/cancers11030338. PubMed PMC

Bagratuni T, Patseas D, Mavrianou-Koutsoukou N, et al. Characterization of a PERK kinase inhibitor with anti-myeloma activity. Cancers. 2020;12(10):2864. 10.3390/cancers12102864. PubMed PMC

Stokes ME, Calvo V, Fujisawa S, et al. PERK inhibition by HC-5404 sensitizes renal cell carcinoma tumor models to antiangiogenic tyrosine kinase inhibitors. Clin Cancer Res. 2023;29(23):4870–82. 10.1158/1078-0432.CCR-23-1182. PubMed PMC

Schewe DM, Aguirre-Ghiso JA. Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res. 2009;69(4):1545–52. 10.1158/0008-5472.CAN-08-3858. PubMed PMC

Michallet AS, Mondiere P, Taillardet M, et al. Compromising the unfolded protein response induces autophagy-mediated cell death in multiple myeloma cells. PLoS ONE. 2011;6(10): e25820. 10.1371/journal.pone.0025820. PubMed PMC

De Gassart A, Bujisic B, Zaffalon L, et al. An inhibitor of HIV-1 protease modulates constitutive eIF2α dephosphorylation to trigger a specific integrated stress response. Proc Natl Acad Sci U S A. 2016;113(2):E117–26. 10.1073/pnas.1514076113. PubMed PMC

Tang TF, Chan YT, Cheong HC, et al. Regulatory network of BLIMP1, IRF4, and XBP1 triad in plasmacytic differentiation and multiple myeloma pathogenesis. Cell Immunol. 2022;380: 104594. 10.1016/j.cellimm.2022.104594. PubMed

Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol. 2003;23:7448–59. 10.1128/MCB.23.21.7448-7459.2003. PubMed PMC

Lee AH, Chu GC, Iwakoshi NN, Glimcher LH. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 2005;24(24):4368–80. 10.1038/sj.emboj.7600903. PubMed PMC

Clauss IM, Gravallese EM, Darling JM, et al. In situ hybridization studies suggest a role for the basic region-leucine zipper protein hXBP-1 in exocrine gland and skeletal development during mouse embryogenesis. Dev Dyn. 1993;197(2):146–56. 10.1002/aja.1001970207. PubMed

Reimold AM, Ponath PD, Li YS, et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J Exp Med. 1996;183(2):393–401. 10.1084/jem.183.2.393. PubMed PMC

Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412(6844):300–7. 10.1038/35085509. PubMed

Taubenheim N, Tarlinton DM, Crawford S, et al. High rate of antibody secretion is not integral to plasma cell differentiation as revealed by XBP-1 deficiency. J Immunol. 2012;189(7):3328–38. 10.4049/jimmunol.1201042. PubMed

Todd DJ, McHeyzer-Williams LJ, Kowal C, et al. XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J Exp Med. 2009;206(10):2151–9. 10.1084/jem.20090738. PubMed PMC

Tellier J, Shi W, Minnich M, et al. Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nat Immunol. 2016;17(3):323–30. 10.1038/ni.3348. PubMed PMC

Carrasco DR, Sukhdeo K, Protopopova M, et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell. 2007;11:349–60. 10.1016/j.ccr.2007.02.015. PubMed PMC

Munshi NC, Hideshima T, Carrasco D, et al. Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood. 2004;103(5):1799–806. 10.1182/blood-2003-02-0402. PubMed

Bagratuni T, Wu P, Gonzalez de Castro D, et al. XBP1s levels are implicated in the biology and outcome of myeloma mediating different clinical outcomes to thalidomide-based treatments. Blood. 2010;116(2):250–3. 10.1182/blood-2010-01-263236. PubMed

Kellner J, Wallace C, Liu B, Li Z. Definition of a multiple myeloma progenitor population in mice driven by enforced expression of XBP1s. JCI Insight. 2019;4(7): e124698. 10.1172/jci.insight.124698. PubMed PMC

Pérez-Galán P, Mora-Jensen H, Weniger MA, et al. Bortezomib resistance in mantle cell lymphoma is associated with plasmacytic differentiation. Blood. 2011;117(2):542–52. 10.1182/blood-2010-02-269514. PubMed PMC

Harnoss JM, Le Thomas A, Shemorry A, et al. Disruption of IRE1α through its kinase domain attenuates multiple myeloma. Proc Natl Acad Sci U S A. 2019;116(33):16420–9. 10.1073/pnas.1906999116. PubMed PMC

Ledergor G, Weiner A, Zada M, et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat Med. 2018;24(12):1867–76. 10.1038/s41591-018-0269-2. PubMed

Furukawa Y, Kikuchi J. Molecular basis of clonal evolution in multiple myeloma. Int J Hematol. 2020;111(4):496–511. 10.1007/s12185-020-02829-6. PubMed

Borjan B, Kern J, Steiner N, et al. Spliced XBP1 levels determine sensitivity of multiple myeloma cells to proteasome inhibitor bortezomib independent of the unfolded protein response mediator GRP78. Front Oncol. 2020;9:1530. 10.3389/fonc.2019.01530. PubMed PMC

Ling SC, Lau EK, Al-Shabeeb A, et al. Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica. 2012;97(1):64–72. 10.3389/fonc.2019.01530. PubMed PMC

Zang M, Guo J, Liu L, et al. Cdc37 suppression induces plasma cell immaturation and bortezomib resistance in multiple myeloma via Xbp1s. Oncogenesis. 2020;9(3):31. 10.1038/s41389-020-0216-1. PubMed PMC

Besse L, Besse A, Kraus M, et al. High immunoproteasome activity and sXBP1 in pediatric precursor B-ALL predicts sensitivity towards proteasome inhibitors. Cells. 2021;10(11):2853. 10.3390/cells10112853. PubMed PMC

Gambella M, Rocci A, Passera R, et al. High XBP1 expression is a marker of better outcome in multiple myeloma patients treated with bortezomib. Haematologica. 2014;99(2):e14–6. 10.3324/haematol.2013.090142. PubMed PMC

Qin XQ, An G, Li ZJ, et al. Secretory status of monoclonal immunoglobulin is related to the outcome of patients with myeloma: a retrospective study. Blood Adv. 2019;3(5):751–60. 10.1182/bloodadvances.2018019851. PubMed PMC

Hong SY, Hagen T. Multiple myeloma Leu167Ile (c.499C>A) mutation prevents XBP1 mRNA splicing. Br J Haematol. 2013;161(6):898–901. 10.1111/bjh.12310. PubMed

Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–72. 10.1038/nature09837. PubMed PMC

Zhang L, Gong J, Yaqiong L. Spliced X-Box binding protein 1 predicts satisfying responsiveness and survival benefit toward bortezomib-based therapy in multiple myeloma patients. Hematology. 2022;27(1):1102–9. 10.1080/16078454.2022.2117123. PubMed

Peters JM, Walsh MJ, Franke WW. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. EMBO J. 1990;9(6):1757–67. 10.1002/j.1460-2075.1990.tb08300.x. PubMed PMC

Kilgas S, Ramadan K. Inhibitors of the ATPase p97/VCP: from basic research to clinical applications. Cell Chem Biol. 2023;30(1):3–21. 10.1016/j.chembiol.2022.12.007. PubMed

Latterich M, Fröhlich KU, Schekman R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell. 1995;82(6):885–93. 10.1016/0092-8674(95)90268-6. PubMed

Sommer T, Jentsch S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature. 1993;365(6442):176–9. 10.1038/365176a0. PubMed

Eldeeb MA, Thomas RA, Ragheb MA, et al. Mitochondrial quality control in health and in Parkinson’s disease. Physiol Rev. 2022;102(4):1721–55. 10.1152/physrev.00041.2021. PubMed

Ramanathan HN, Ye Y. The p97 ATPase associates with EEA1 to regulate the size of early endosomes. Cell Res. 2012;22(2):346–59. 10.1038/cr.2011.80. PubMed PMC

Verma R, Oania RS, Kolawa NJ, Deshaies RJ. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. Elife. 2013;2: e00308. 10.7554/eLife.00308. PubMed PMC

Buchberger A, Schindelin H, Hänzelmann P. Control of p97 function by cofactor binding. FEBS Lett. 2015;589(19 Pt A):2578–89. 10.1016/j.febslet.2015.08.028. PubMed

Twomey EC, Ji Z, Wales TE, et al. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. Science. 2019;365(6452):eaax1033. 10.1126/science.aax1033. PubMed PMC

Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science. 2006;313(5783):104–7. 10.1126/science.1129631. PubMed

Deshaies RJ. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 2014;12:94. 10.1186/s12915-014-0094-0. PubMed PMC

Anderson DJ, Le Moigne R, Djakovic S, et al. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell. 2015;28(5):653–65. 10.1016/j.ccell.2015.10.002. PubMed PMC

Huang Z, Wu Y, Zhou X, et al. Efficacy of therapy with bortezomib in solid tumors: a review based on 32 clinical trials. Future Oncol. 2014;10(10):1795–807. 10.2217/fon.14.30. PubMed

Chou TF, Deshaies RJ. Development of p97 AAA ATPase inhibitors. Autophagy. 2011;7(9):1091–2. 10.4161/auto.7.9.16489. PubMed PMC

Hill SM, Wrobel L, Ashkenazi A, et al. VCP/p97 regulates Beclin-1-dependent autophagy initiation. Nat Chem Biol. 2021;17(4):448–55. 10.1038/s41589-020-00726-x. PubMed

Auner HW, Moody AM, Ward TH, et al. Combined inhibition of p97 and the proteasome causes lethal disruption of the secretory apparatus in multiple myeloma cells. PLoS ONE. 2013;8(9): e74415. 10.1371/journal.pone.0074415. PubMed PMC

Soriano GP, Besse L, Li N, et al. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia. 2016;30(11):2198–207. 10.1038/leu.2016.102. PubMed PMC

Le Moigne R, Aftab BT, Djakovic S, et al. The p97 inhibitor CB-5083 is a unique disrupter of protein homeostasis in models of multiple myeloma. Mol Cancer Ther. 2017;16(11):2375–86. 10.1158/1535-7163.MCT-17-0233. PubMed

Nishimura N, Radwan MO, Amano M, et al. Novel p97/VCP inhibitor induces endoplasmic reticulum stress and apoptosis in both bortezomib-sensitive and -resistant multiple myeloma cells. Cancer Sci. 2019;110(10):3275–87. 10.1111/cas.14154. PubMed PMC

Skrott Z, Mistrik M, Andersen KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 2017;552(7684):194–9. 10.1038/nature25016. PubMed PMC

Pan M, Zheng Q, Yu Y, et al. Seesaw conformations of Npl4 in the human p97 complex and the inhibitory mechanism of a disulfiram derivative. Nat Commun. 2021;12(1):121. 10.1038/s41467-020-20359-x. PubMed PMC

Chroma K, Skrott Z, Gursky J, et al. A drug repurposing strategy for overcoming human multiple myeloma resistance to standard-of-care treatment. Cell Death Dis. 2022;13(3):203. 10.1038/s41419-022-04651-w. PubMed PMC

Tilk S, Frydman J, Curtis C, Petrov DA. Cancers adapt to their mutational load by buffering protein misfolding stress. Elife. 2024;12:RP87301. 10.7554/eLife.87301. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...