The mitochondrial proteome of diplonemids: from conventional pathways to eccentric RNA editing and transcript processing
Status In-Process Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-06479X
Grantová Agentura České Republiky
RGPIN-2014-05286
Natural Sciences and Engineering Research Council of Canada
2018-PR-206806
Fonds de recherche du Québec - Nature et technologies
PubMed
41382025
PubMed Central
PMC12699882
DOI
10.1186/s12864-025-12233-1
PII: 10.1186/s12864-025-12233-1
Knihovny.cz E-zdroje
- Klíčová slova
- Diplonemids, Mitochondria, Paradiplonema, Proteome, RNA processing,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Diplonemids constitute an abundant and geographically widespread but little-studied group of marine protists. A hallmark of this lineage, the kinetoplastid sister group within Euglenozoa, is a mitochondrial genome comprising numerous small circular DNA molecules that carry fragments of mitochondrial genes. Complex RNA processing of the corresponding transcripts involves numerous ligation and RNA editing steps in the production of mature RNA species. To assess the diplonemid mitochondrial proteome and, in particular, to search for proteins that might mediate RNA processing, we undertook a comprehensive in silico analysis to predict candidate mitochondrial proteins in the type species Diplonema papillatum. RESULTS: Using sequence similarity searches in conjunction with a mitochondrial targeting pipeline, we identified at least 1878 candidate nucleus-encoded mitochondrial proteins in addition to 16 mitochondrion-encoded proteins described previously. Despite the highly unconventional nature of the mitochondrial genome in D. papillatum, its mitochondrial proteome (mitoproteome) contains virtually all the functionally most important proteins that are ubiquitous among aerobic mitochondria, and several novel proteins that have been recruited in the euglenozoan last common ancestor to augment complexes involved in coupled electron transport oxidative phosphorylation and mitochondrial ribosome formation. Notably, we identified several individual proteins and multi-protein families that are candidates for RNA ligation and editing enzymes. CONCLUSIONS: This first comprehensive mitoproteome data for a diplonemid, together with published mitoproteome data for other members of Discoba, allows us to make inferences about marked changes in mitochondrial structure and function that have occurred since the divergence of diplonemids and other euglenozoans from the last common discobid ancestor. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-025-12233-1.
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Flegontova O, Flegontov P, Londoño PAC, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environl Microbiol. 2020;22(9):4014–31. PubMed DOI
Obiol A, Giner CR, Sánchez P, Duarte CM, Acinas SG, Massana R. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour. 2020;20(3):718–31. PubMed DOI
Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, Lang BF, Eliáš M. Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci USA. 2015;112(7):E693–9. PubMed DOI PMC
Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997;387(6632):493–7. PubMed DOI
Burger G, Gray MW, Forget L, Lang BF. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout Jakobid protists. Genome Biol Evol. 2013;5(2):418–38. PubMed DOI PMC
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc B Biol Sci 2015, 370(1678). PubMed PMC
Faktorová D, Valach M, Kaur B, Burger G, Lukeš J. Mitochondrial RNA editing and processing in diplonemid protists. In:
Lukeš J, Wheeler R, Jirsová D, David V, Archibald JM. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life. 2018;70(12):1267–74. PubMed DOI PMC
Burger G, Valach M. Perfection of eccentricity: mitochondrial genomes of diplonemids. IUBMB Life. 2018;70(12):1197–206. PubMed DOI
Kiethega G, Yan Y, Turcotte M, Burger G. RNA-level unscrambling of fragmented genes in PubMed DOI PMC
Moreira S, Valach M, Aoulad-Aissa M, Otto C, Burger G. Novel modes of RNA editing in mitochondria. Nucleic Acids Res. 2016;44(10):4907–19. PubMed DOI PMC
Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, Burger G, Lukeš J. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res. 2020;48(5):2694–708. PubMed DOI PMC
Valach M, Moreira S, Kiethega GN, Burger G. Trans-splicing and RNA editing of LSU rRNA in PubMed DOI PMC
Valach M, Benz C, Aguilar LC, Gahura O, Faktorová D, Zíková A, Oeffinger M, Burger G, Gray MW, Lukeš J. Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway. Nucleic Acids Res. 2023;51(12):6443–60. PubMed DOI PMC
Li S-J, Zhang X, Lukeš J, Li B-Q, Wang J-F, Qu L-H, Hide G, Lai D-H, Lun Z-R. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen PubMed DOI PMC
Faktorová D, Dobáková E, Peña-Diaz P, Lukeš J. From simple to supercomplex: mitochondrial genomes of euglenozoan protists. F1000Res. 2016;5:F1000. Faculty Rev-1392. PubMed DOI PMC
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. The draft nuclear genome sequence and predicted mitochondrial proteome of PubMed DOI PMC
Smith DGS, Gawryluk RMR, Spencer DF, Pearlman RE, Siu KWM, Gray MW. Exploring the mitochondrial proteome of the ciliate protozoon PubMed DOI
Atteia A, Adrait A, Brugière S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, et al. A proteomic survey of PubMed DOI
Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD. A comprehensive analysis of PubMed DOI PMC
Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote ( PubMed DOI
Hammond MJ, Nenarokova A, Butenko A, Zoltner M, Dobáková EL, Field MC, Lukeš J. A uniquely complex mitochondrial proteome from PubMed DOI PMC
van Esveld SL, Meerstein-Kessel L, Boshoven C, Baaij JF, Barylyuk K, Coolen JPM, van Strien J, Duim RAJ, Dutilh BE, Garza DR, et al. A prioritized and validated resource of mitochondrial proteins in PubMed PMC
Valach M, Moreira S, Petitjean C, Benz C, Butenko A, Flegontova O, Nenarokova A, Prokopchuk G, Batstone T, Lapébie P, et al. Recent expansion of metabolic versatility in PubMed DOI PMC
Vlček C, Marande W, Teijeiro S, Lukeš J, Burger G. Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res. 2011;39(3):979–88. PubMed DOI PMC
Záhonová K, Valach M, Tripathi P, Benz C, Opperdoes FR, Barath P, Lukáčová V, Danchenko M, Faktorová D, Horváth A, et al. Subunit composition of mitochondrial dehydrogenase complexes in diplonemid flagellates. Biochim Biophys Acta Gen Subj. 2023;9(130419):13. PubMed
Valach M, Léveillé-Kunst A, Gray MW, Burger G. Respiratory chain complex I of unparalleled divergence in diplonemids. J Biol Chem. 2018;293(41):16043–56. PubMed DOI PMC
Škodová-Sveráková I, Záhonová K, Juricová V, Danchenko M, Moos M, Baráth P, Prokopchuk G, Butenko A, Lukáčová V, Kohútová L, et al. Highly flexible metabolism of the marine euglenozoan protist PubMed DOI PMC
Oudot-Le Secq M-P, Loiseaux-de Goër S, Stam WT, Olsen JL. Complete mitochondrial genomes of the three brown algae (Heterokonta: Phaeophyceae) PubMed DOI
He Z, Wu M, Tian H, Wang L, Hu Y, Han F, Zhou J, Wang Y, Zhou L. PubMed DOI PMC
Brandt U. Energy converting nadh:quinone oxidoreductase (complex I). Annu Rev Biochem. 2006;75:69–92. PubMed DOI
Gawryluk RMR, Gray MW. A split and rearranged nuclear gene encoding the iron-sulfur subunit of mitochondrial succinate dehydrogenase in euglenozoa. BMC Res Notes. 2009;2(1):16. PubMed DOI PMC
Morales J, Mogi T, Mineki S, Takashima E, Mineki R, Hirawake H, Sakamoto K, Ōmura S, Kita K. Novel mitochondrial complex II isolated from PubMed DOI PMC
Brandt U, Uribe S, Schägger H, Trumpower BL. Isolation and characterization of PubMed DOI
Gawryluk RMR, Gray MW. An ancient fission of mitochondrial PubMed DOI
Sinha SD, Wideman JG. The persistent homology of mitochondrial ATP synthases. iScience. 2023;26(5):106700. PubMed DOI PMC
Wideman JG, Gawryluk RMR, Gray MW, Dacks JB. The ancient and widespread nature of the ER–mitochondria encounter structure. Mol Biol Evol. 2013;30(9):2044–9. PubMed DOI
Zíková A, Schnaufer A, Dalley RA, Panigrahi AK, Stuart KD. The F PubMed DOI PMC
Montgomery MG, Gahura O, Leslie AGW, Zíková A, Walker JE. ATP synthase from PubMed DOI PMC
Zíková A, Panigrahi AK, Uboldi AD, Dalley RA, Handman E, Stuart K. Structural and functional association of PubMed DOI PMC
Acestor N, Zíková A, Dalley RA, Anupama A, Panigrahi AK, Stuart KD. PubMed DOI PMC
Duarte M, Tomás AM. The mitochondrial complex I of trypanosomatids - an overview of current knowledge. J Bioenerg Biomembr. 2014;46(4):299–311. PubMed DOI
Perez E, Lapaille M, Degand H, Cilibrasi L, Villavicencio-Queijeiro A, Morsomme P, González-Halphen D, Field MC, Remacle C, Baurain D, et al. The mitochondrial respiratory chain of the secondary green Alga PubMed DOI
Miranda-Astudillo HV, Yadav KNS, Colina-Tenorio L, Bouillenne F, Degand H, Morsomme P, Boekema EJ, Cardol P. The atypical subunit composition of respiratory complexes I and IV is associated with original extra structural domains in PubMed DOI PMC
Cavallaro G. Genome-wide analysis of eukaryotic twin Cx PubMed DOI
Angerer H. The superfamily of mitochondrial Complex1_LYR motif-containing (LYRM) proteins. Biochem Soc Trans. 2013;41(5):1335–41. PubMed DOI
Fang J, Beattie DS. Alternative oxidase present in procyclic PubMed DOI
Chaudhuri M, Ott RD, Hill GC. Trypanosome alternative oxidase: from molecule to function. Trends Parasitol. 2006;22(10):484–91. PubMed DOI
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, et al. Malleable mitochondrion of PubMed DOI
Harada R, Hirakawa Y, Yabuki A, Kashiyama Y, Maruyama M, Onuma R, Soukal P, Miyagishima S, Hampl V, Tanifuji G, et al. Inventory and evolution of mitochondrion-localized family A DNA polymerases in euglenozoa. Pathogens. 2020;9(4):257. PubMed DOI PMC
Harada R, Inagaki Y. Phage origin of mitochondrion-localized family A DNA polymerases in kinetoplastids and diplonemids. Genome Biol Evol 2021, 13(2). PubMed PMC
Harada R, Hirakawa Y, Yabuki A, Kim E, Yazaki E, Kamikawa R, Nakano K, Eliáš M, Inagaki Y. Encyclopedia of family A DNA polymerases localized in organelles: evolutionary contribution of bacteria including the proto-mitochondrion. Mol Biol Evol 2024, 41(2). PubMed PMC
Klingbeil MM, Motyka SA, Englund PT. Multiple mitochondrial DNA polymerases in PubMed DOI
Rajão MA, Passos-Silva DG, DaRocha WD, Franco GR, Macedo AM, Pena SD, Teixeira SM, Machado CR. DNA polymerase kappa from PubMed DOI
Marande W, Burger G. Mitochondrial DNA as a genomic Jigsaw puzzle. Science. 2007;318(5849):415. PubMed DOI
Burger G, Moreira S, Valach M. Genes in hiding. Trends Genet. 2016;32(9):553–65. PubMed DOI
Hancock K, Hajduk SL. The mitochondrial tRNAs of PubMed DOI
Alfonzo JD, Blanc V, Estévez AM, Rubio MAT, Simpson L. C to U editing of the anticodon of imported mitochondrial tRNA PubMed DOI PMC
Afonin DA, Gerasimov ES, Škodová-Sveráková I, Záhonová K, Gahura O, Albanaz Amanda TS, Myšková E, Bykova A, Paris Z, Lukeš J, et al. PubMed DOI PMC
Shikha S, Huot JL, Schneider A, Niemann M. tRNA import across the mitochondrial inner membrane in PubMed DOI PMC
Schmitz-Linneweber C, Small I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci. 2008;13(12):663–70. PubMed DOI
Small ID, Peeters N. The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci. 2000;25(2):45–7. PubMed DOI
Small ID, Schallenberg-Rüdinger M, Takenaka M, Mireau H, Ostersetzer-Biran O. Plant organellar RNA editing: what 30 years of research has revealed. Plant J. 2020;101(5):1040–56. PubMed DOI
Charrière F, Helgadóttir S, Horn EK, Söll D, Schneider A. Dual targeting of a single tRNA PubMed DOI PMC
Charrière F, O’Donoghue P, Helgadóttir S, Maréchal-Drouard L, Cristodero M, Horn EK, Söll D, Schneider A. Dual targeting of a tRNA PubMed DOI PMC
Español Y, Thut D, Schneider A, Ribas de Pouplana L. A mechanism for functional segregation of mitochondrial and cytosolic genetic codes. Proc Natl Acad Sci USA. 2009;106(46):19420–5. PubMed DOI PMC
Hillman GA, Henry MF. The yeast protein Mam33 functions in the assembly of the mitochondrial ribosome. J Biol Chem. 2019;294(25):9813–29. PubMed DOI PMC
Crain PF, Alfonzo JD, Rozenski J, Kapushoc ST, McCloskey JA, Simpson L. Modification of the universally unmodified uridine-33 in a mitochondria-imported edited tRNA and the role of the anticodon arm structure on editing efficiency. RNA. 2002;8(6):752–61. PubMed DOI PMC
Paris Z, Alfonzo JD. How the intracellular partitioning of tRNA and tRNA modification enzymes affects mitochondrial function. IUBMB Life. 2018;70(12):1207–13. PubMed DOI PMC
Paris Z, Svobodová M, Kachale A, Horáková E, Nenarokova A, Lukeš J. A mitochondrial cytidine deaminase is responsible for C to U editing of tRNA PubMed DOI PMC
Michel AH, Kornmann B. The ERMES complex and ER-mitochondria connections. Biochem Soc Trans. 2012;40(2):445–50. PubMed DOI
Záhonová K, Füssy Z, Stairs CW, Leger MM, Tachezy J, Čepička I, et al. Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans. Microb Genom. 2023;9:001143. 10.1099/mgen.0.001143. PubMed DOI PMC
Zerbes RM, van der Klei IJ, Veenhuis M, Pfanner N, van der Laan M, Bohnert M. Mitofilin complexes: conserved organizers of mitochondrial membrane architecture. Biol Chem. 2012;393(11):1247–61. PubMed DOI
Huynen MA, Mühlmeister M, Gotthardt K, Guerrero-Castillo S, Brandt U. Evolution and structural organization of the mitochondrial contact site (MICOS) complex and the mitochondrial intermembrane space bridging (MIB) complex. Biochim Biophys Acta. 2016;1863(1):91–101. PubMed DOI
Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, Bílý T, Potěšil D, Eichenberger C, Bruce H, Oeljeklaus S, et al. The diverged trypanosome MICOS complex as a hub for mitochondrial Cristae shaping and protein import. Curr Biol. 2018;28(21):3393–e34073395. PubMed DOI
Morel CA, Asencio C, Moreira D, Blancard C, Salin B, Gontier E, Duvezin-Caubet S, Rojo M, Bringaud F, Tetaud E. A new member of the dynamin superfamily modulates mitochondrial membrane branching inTrypanosoma brucei. Curr Biol. 2025;35(6):1337–1352.e5. PubMed
Morgan GW, Goulding D, Field MC. The single dynamin-like protein of PubMed DOI
Chanez A-L, Hehl AB, Engstler M, Schneider A. Ablation of the single dynamin of PubMed DOI
Benz C, Stříbrná E, Hashimi H, Lukeš J. Dynamin-like proteins in PubMed DOI PMC
Dolezal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science. 2006;313(5785):314–8. PubMed DOI
Mani J, Meisinger C, Schneider A. Peeping at TOMs—diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Mol Biol Evol. 2016;33(2):337–51. PubMed DOI
Schneider A. Mitochondrial protein import in trypanosomatids: variations on a theme or fundamentally different? PLOS Pathog. 2018;14(11):e1007351. PubMed DOI PMC
von Känel C, Stettler P, Esposito C, Berger S, Amodeo S, Oeljeklaus S, Calderaro S, Durante IM, Rašková V, Warscheid B, et al. Pam16 and Pam18 were repurposed during PubMed DOI PMC
von Känel C, Muñoz-Gómez SA, Oeljeklaus S, Wenger C, Warscheid B, Wideman JG, Harsman A, Schneider A. Homologue replacement in the import motor of the mitochondrial inner membrane of trypanosomes. eLife. 2020;27(9):52560. PubMed DOI PMC
Bauerschmitt H, Mick DU, Deckers M, Vollmer C, Funes S, Kehrein K, Ott M, Rehling P, Herrmann JM, Fox TD. Ribosome-binding proteins Mdm38 and Mba1 display overlapping functions for regulation of mitochondrial translation. Mol Biol Cell. 2010;21(12):1937–44. PubMed DOI PMC
Preuss M, Leonhard K, Hell K, Stuart RA, Neupert W, Herrmann JM. Mba1, a novel component of the mitochondrial protein export machinery of the yeast PubMed DOI PMC
Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol. 2011;162(1):53–70. PubMed DOI
Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, Schmitz N, Aebersold R, Ban N. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature. 2014;515(7526):283–6. PubMed DOI
Wenger C, Harsman A, Niemann M, Oeljeklaus S, von Känel C, Calderaro S, Warscheid B, Schneider A. The Mba1 homologue of PubMed DOI
Möller-Hergt BV, Carlström A, Stephan K, Imhof A, Ott M. The ribosome receptors Mrx15 and Mba1 jointly organize cotranslational insertion and protein biogenesis in mitochondria. Mol Biol Cell. 2018;29(20):2386–96. PubMed DOI PMC
Wenger C, Oeljeklaus S, Warscheid B, Schneider A, Harsman A. A trypanosomal orthologue of an intermembrane space chaperone has a non-canonical function in biogenesis of the single mitochondrial inner membrane protein translocase. PubMed PMC
Harsman A, Oeljeklaus S, Wenger C, Huot JL, Warscheid B, Schneider A. The non-canonical mitochondrial inner membrane presequence translocase of trypanosomatids contains two essential rhomboid-like proteins. Nat Commun. 2016;7(1):13707. PubMed DOI PMC
Allen JWA, Ferguson SJ, Ginger ML. Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for Stepwise evolution of the MIA pathway for import of cysteine-rich proteins. FEBS Lett. 2008;582(19):2817–25. PubMed DOI
Basu S, Leonard JC, Desai N, Mavridou DAI, Tang KH, Goddard AD, Ginger ML, Lukeš J, Allen JWA. Divergence of Erv1-associated mitochondrial import and export pathways in trypanosomes and anaerobic protists. Eukaryot Cell. 2013;12(2):343–55. PubMed DOI PMC
Longen S, Bien M, Bihlmaier K, Kloeppel C, Kauff F, Hammermeister M, Westermann B, Herrmann JM, Riemer J. Systematic analysis of the twin Cx PubMed DOI
Palmer T, Berks BC. The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol. 2012;10:483. PubMed DOI
Horváthová L, Žárský V, Pánek T, Derelle R, Pyrih J, Krupičková A, Klápšťová V, Klimeš V, Petrů M, Vaitová Z, et al. Ancestral mitochondrial protein secretion machinery. BioRxiv. 2019. 10.1101/790865. DOI
Taylor EB. Functional properties of the mitochondrial carrier system. Trends Cell Biol. 2017;27(9):633–44. PubMed DOI PMC
Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR. Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J. 2011;66(1):161–81. PubMed DOI
Pusnik M, Charrière F, Mäser P, Waller RF, Dagley MJ, Lithgow T, Schneider A. The single mitochondrial Porin of PubMed DOI
Kamer KJ, Mootha VK. The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol. 2015;16(9):545–53. PubMed DOI
Allan CM, Awad AM, Johnson JS, Shirasaki DI, Wang C, Blaby-Haas CE, Merchant SS, Loo JA, Clarke CF. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in PubMed DOI PMC
Nishida I, Ohmori Y, Yanai R, Nishihara S, Matsuo Y, Kaino T, Hirata D, Kawamukai M. Identification of novel coenzyme Q PubMed PMC
Ahmadpour ST, Mahéo K, Servais S, Brisson L, Dumas JF. Cardiolipin, the mitochondrial signature lipid: implication in cancer. PubMed PMC
Lilley AC, Major L, Young S, Stark MJ, Smith TK. The essential roles of cytidine diphosphate-diacylglycerol synthase in bloodstream form PubMed DOI PMC
Tamura Y, Iijima M, Sesaki H. Mdm35p imports ups proteins into the mitochondrial intermembrane space by functional complex formation. EMBO J. 2010;29(17):2875–87. PubMed DOI PMC
Blahut M, Sanchez E, Fisher CE, Outten FW. Fe-S cluster biogenesis by the bacterial Suf pathway. Biochim Biophys Acta. 2020;11(118829):18. PubMed PMC
Peña-Diaz P, Braymer JJ, Vacek V, Zelená M, Lometto S, Mais CN, Hrdý I, Treitli SC, Hochberg GKA, Py B, et al. Characterization of the SUF FeS cluster synthesis machinery in the amitochondriate eukaryote PubMed DOI
Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG, Prasad B, Soukal P, Santana-Molina C, O’Neill E, Nankissoor NN, et al. Transcriptome, proteome and draft genome of PubMed DOI PMC
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, et al. Metabolic quirks and the colourful history of the PubMed DOI
Leonhard K, Herrmann JM, Stuart RA, Mannhaupt G, Neupert W, Langer T. AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria. EMBO J. 1996;15(16):4218–29. PubMed DOI PMC
Pyrih J, Rašková V, Škodová-Sveráková I, Pánek T, Lukeš J. ZapE/Afg1 interacts with Oxa1 and its depletion causes a multifaceted phenotype. PLoS ONE 2020, 15(6). PubMed PMC
Cesnekova J, Rodinova M, Hansikova H, Houstek J, Zeman J, Stiburek L. The mammalian homologue of yeast Afg1 ATPase (lactation elevated 1) mediates degradation of nuclear-encoded complex IV subunits. Biochem J. 2016;473(6):797–804. PubMed DOI
Cox Andrew G, Winterbourn Christine C, Hampton Mark B. Mitochondrial Peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J. 2010;425(2):313–25. PubMed DOI
Yeates TO. Structures of SET domain proteins: protein lysine methyltransferases make their mark. Cell. 2002;111(1):5–7. PubMed DOI
More K, Klinger CM, Barlow LD, Dacks JB. Evolution and natural history of membrane trafficking in eukaryotes. Curr Biol. 2020;30(10):R553–64. PubMed DOI
Záhonová K, Lukeš J, Dacks JB. Diplonemid protists possess exotic endomembrane machinery, impacting models of membrane trafficking in modern and ancient eukaryotes. Curr Biol. 2025;35(7):1508–1520.e2. PubMed
Valach M, Moreira S, Faktorová D, Lukeš J, Burger G. Post-transcriptional mending of gene sequences: looking under the Hood of mitochondrial gene expression in diplonemids. RNA Biol. 2016;13(12):1204–11. PubMed DOI PMC
Valach M, Moreira S, Hoffmann S, Stadler PF, Burger G. Keeping it complicated: mitochondrial genome plasticity across diplonemids. Sci Rep. 2017;7(1):14166. PubMed DOI PMC
Kiethega GN, Turcotte M, Burger G. Evolutionarily conserved PubMed DOI
Popow J, Englert M, Weitzer S, Schleiffer A, Mierzwa B, Mechtler K, Trowitzsch S, Will CL, Lührmann R, Söll D. HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science. 2011;331(6018):760–4. PubMed DOI
Tanaka N, Meineke B, Shuman S. RtcB, a novel RNA ligase, can catalyze tRNA splicing and PubMed DOI PMC
Popow J, Schleiffer A, Martinez J. Diversity and roles of (t)RNA ligases. Cell Mol Life Sci. 2012;69(16):2657–70. PubMed DOI PMC
Englert M, Sheppard K, Aslanian A, Yates JR, Söll D. Archaeal 3′-phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation. Proc Natl Acad Sci USA. 2011;108(4):1290–5. PubMed DOI PMC
Popow J, Jurkin J, Schleiffer A, Martinez J. Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors. Nature. 2014;511(7507):104–7. PubMed DOI PMC
Pyrih J, Hammond M, Alves A, Dean S, Sunter JD, Wheeler RJ, Gull K, Lukeš J. Comprehensive sub-mitochondrial protein map of the parasitic protist PubMed DOI
Billington K, Halliday C, Madden R, Dyer P, Barker AR, Moreira-Leite FF, Carrington M, Vaughan S, Hertz-Fowler C, Dean S, et al. Genome-wide subcellular protein map for the flagellate parasite PubMed DOI PMC
Lopes RRS, Silveira GO, Eitler R, Vidal RS, Kessler A, Hinger S, Paris Z, Alfonzo JD, Polycarpo C. The essential function of the PubMed DOI PMC
Genschik P, Drabikowski K, Filipowicz W. Characterization of the PubMed DOI
Das U, Chakravarty AK, Remus BS, Shuman S. Rewriting the rules for end joining via enzymatic splicing of DNA 3′-PO PubMed DOI PMC
Maughan WP, Shuman S. Characterization of 3′-phosphate RNA ligase paralogs RtcB1, RtcB2, and RtcB3 from PubMed DOI PMC
Engl C, Schaefer J, Kotta-Loizou I, Buck M. Cellular and molecular phenotypes depending upon the RNA repair system RtcAB of PubMed PMC
Temmel H, Müller C, Sauert M, Vesper O, Reiss A, Popow J, Martinez J, Moll I. The RNA ligase RtcB reverses MazF-induced ribosome heterogeneity in PubMed PMC
Tian Y, Zeng F, Raybarman A, Fatma S, Carruthers A, Li Q, Huang RH. Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB. Proc Natl Acad Sci USA. 2022;119(29):e2202464119. PubMed DOI PMC
Lukeš J, Kaur B, Speijer D. RNA editing in mitochondria and plastids: Weird and widespread. Trends Genet. 2021;37(2):99–102. PubMed DOI
Ernst NL, Panicucci B, Igo RP Jr., Panigrahi AK, Salavati R, Stuart K. TbMP57 is a 3’ terminal Uridylyl transferase (TUTase) of the trypanosoma brucei editosome. Mol Cell. 2003;11(6):1525–36. PubMed DOI
Rajappa-Titu L, Suematsu T, Munoz-Tello P, Long M, Demir Ö, Cheng KJ, Stagno JR, Luecke H, Amaro RE, Aphasizheva I, et al. RNA editing tutase 1: structural foundation of substrate recognition, complex interactions and drug targeting. Nucleic Acids Res. 2016;44(22):10862–78. PubMed DOI PMC
Deng J, Ernst NL, Turley S, Stuart KD, Hol WG. Structural basis for UTP specificity of RNA editing tutases from PubMed DOI PMC
Ringpis G-E, Aphasizheva I, Wang X, Huang L, Lathrop RH, Hatfield GW, Aphasizhev R. Mechanism of U insertion RNA editing in trypanosome mitochondria: the bimodal tutase activity of the core complex. J Mol Biol. 2010;399(5):680–95. PubMed DOI PMC
Ringpis G-E, Stagno J, Aphasizhev R. Mechanism of U-insertion RNA editing in trypanosome mitochondria: characterization of RET2 functional domains by mutational analysis. J Mol Biol. 2010;399(5):696–706. PubMed DOI PMC
Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M. A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of PubMed DOI PMC
Oldenkott B, Yang Y, Lesch E, Knoop V, Schallenberg-Rüdinger M. Plant-type pentatricopeptide repeat proteins with a DYW domain drive C-to-U RNA editing in PubMed DOI PMC
Hayes ML, Santibanez PI. A plant pentatricopeptide repeat protein with a DYW-deaminase domain is sufficient for catalyzing C-to-U RNA editing PubMed DOI PMC
Rubio MAT, Pastar I, Gaston KW, Ragone FL, Janzen CJ, Cross GAM, Papavasiliou FN, Alfonzo JD. An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci USA. 2007;104(19):7821–6. PubMed DOI PMC
Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, Joung J, Kirchgatterer P, Cox DBT, Zhang F. A cytosine deaminase for programmable single-base RNA editing. Science. 2019;365(6451):382–6. PubMed DOI PMC
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, et al. Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol. 2020;36(4):337–55. PubMed DOI PMC
Ichinose M, Sugita C, Yagi Y, Nakamura T, Sugita M. Two DYW subclass PPR proteins are involved in RNA editing of PubMed DOI
Sun T, Bentolila S, Hanson MR. The unexpected diversity of plant organelle RNA editosomes. Trends Plant Sci. 2016;21(11):962–73. PubMed DOI
Manna S. An overview of pentatricopeptide repeat proteins and their applications. Biochimie. 2015;113:93–9. PubMed DOI
Wilhelm ML, Reinbolt J, Gangloff J, Dirheimer G, Wilhelm FX. Transfer RNA binding protein in the nucleus of PubMed DOI
Yan W, Schilke B, Pfund C, Walter W, Kim S, Craig EA. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 1998;17(16):4809–17. PubMed DOI PMC
Walsh P, Bursać D, Law YC, Cyr D, Lithgow T. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 2004;5(6):567–71. PubMed DOI PMC
Köhler D, Schmidt-Gattung S, Binder S. The DEAD-box protein PMH2 is required for efficient group II intron splicing in mitochondria of PubMed DOI
Gu L, Xu T, Lee K, Lee KH, Kang H. A chloroplast-localized DEAD-box RNA helicase AtRH3 is essential for intron splicing and plays an important role in the growth and stress response in PubMed DOI
Kumar V, Ivens A, Goodall Z, Meehan J, Doharey PK, Hillhouse A, Hurtado DO, Cai JJ, Zhang X, Schnaufer A, et al. Site-specific and substrate-specific control of accurate mRNA editing by a helicase complex in trypanosomes. RNA. 2020;26(12):1862–81. PubMed DOI PMC
Chaikam V, Karlson DT. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. BMB Rep. 2010;43(1):1–8. PubMed DOI
Behl A, Kumar V, Shevtsov M, Singh S. Pleiotropic roles of cold shock proteins with special emphasis on unexplored cold shock protein member of PubMed DOI PMC
Miller MM, Read LK. PubMed DOI
Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein Language models. Nucleic Acids Res. 2022;50(W1):W228–34. PubMed DOI PMC
Jiang Y, Jiang L, Akhil CS, Wang D, Zhang Z, Zhang W, Xu D. MULocDeep web service for protein localization prediction and visualization at subcellular and suborganellar levels. Nucleic Acids Res. 2023;51(W1):W343–9. PubMed DOI PMC
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(Web Server issue):21. PubMed PMC
Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance 2019, 2(5). PubMed PMC
Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P, Imai K. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteom. 2015;14(4):1113–26. PubMed DOI PMC
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241(3):779–86. PubMed DOI
Hulstaert N, Shofstahl J, Sachsenberg T, Walzer M, Barsnes H, Martens L, Perez-Riverol Y. ThermoRawFileParser: Modular, scalable, and cross-platform RAW file conversion. J Proteome Res. 2020;19(1):537–42. PubMed DOI PMC
Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods. 2017;14(5):513–20. PubMed DOI PMC
da Veiga Leprevost F, Haynes SE, Avtonomov DM, Chang HY, Shanmugam AK, Mellacheruvu D, Kong AT, Nesvizhskii AI. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat Methods. 2020;17(8):869–70. PubMed DOI PMC
Yu F, Haynes SE, Teo GC, Avtonomov DM, Polasky DA, Nesvizhskii AI. Fast quantitative analysis of TimsTOF PASEF data with MSFragger and ionquant. Mol Cell Proteom. 2020;19(9):1575–85. PubMed DOI PMC
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. PubMed DOI PMC
Buchfink B, Reuter K, Drost HG. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18(4):366–8. PubMed DOI PMC
Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, Wideman JG, Burki F, de Vargas C. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022;2:e56. DOI
Wheeler RJ. Discoba protein sequences for protein structure predictions (1.0.1). Zenodo. 2021. 10.5281/zenodo.5682928. [Data set]. DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. PubMed DOI PMC
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9. PubMed DOI
Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5(3):e9490. PubMed DOI PMC
Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27(1):135–45. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. PubMed DOI PMC
van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, Söding J, Steinegger M. Fast and accurate protein structure search with foldseek. Nat Biotechnol. 2023. 10.1038/s41587-023-01773-0. PubMed DOI PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with alphafold. Nature. 2021;596(7873):583–9. PubMed DOI PMC
Benz C, Raas MWD, Tripathi P, Faktorová D, Tromer EC, Akiyoshi B, Lukeš J. On the possibility of yet a third kinetochore system in the protist phylum euglenozoa. mBio. 2024;15(12):02936–02924. PubMed DOI PMC
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7(10):e1002195. PubMed DOI PMC
Karpenahalli MR, Lupas AN, Söding J. TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. BMC Bioinformatics. 2007;8(1):2. PubMed DOI PMC
Ismi DP, Pulungan R, Afiahayati. Deep learning for protein secondary structure prediction: pre and post-AlphaFold. Comput Struct Biotech J. 2022;20:6271–86. PubMed DOI PMC
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50(D1):D439–44. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. PubMed DOI PMC
Høie MH, Kiehl EN, Petersen B, Nielsen M, Winther O, Nielsen H, Hallgren J, Marcatili P. NetSurfP-3.0: accurate and fast prediction of protein structural features by protein Language models and deep learning. Nucleic Acids Res. 2022;50(W1):W510–5. PubMed DOI PMC
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46(W1):W200–4. PubMed DOI PMC