Divergence of Erv1-associated mitochondrial import and export pathways in trypanosomes and anaerobic protists

. 2013 Feb ; 12 (2) : 343-55. [epub] 20121221

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23264646

Grantová podpora
BB/D019753/1 Biotechnology and Biological Sciences Research Council - United Kingdom

In yeast (Saccharomyces cerevisiae) and animals, the sulfhydryl oxidase Erv1 functions with Mia40 in the import and oxidative folding of numerous cysteine-rich proteins in the mitochondrial intermembrane space (IMS). Erv1 is also required for Fe-S cluster assembly in the cytosol, which uses at least one mitochondrially derived precursor. Here, we characterize an essential Erv1 orthologue from the protist Trypanosoma brucei (TbERV1), which naturally lacks a Mia40 homolog. We report kinetic parameters for physiologically relevant oxidants cytochrome c and O(2), unexpectedly find O(2) and cytochrome c are reduced simultaneously, and demonstrate that efficient reduction of O(2) by TbERV1 is not dependent upon a simple O(2) channel defined by conserved histidine and tyrosine residues. Massive mitochondrial swelling following TbERV1 RNA interference (RNAi) provides evidence that trypanosome Erv1 functions in IMS protein import despite the natural absence of the key player in the yeast and animal import pathways, Mia40. This suggests significant evolutionary divergence from a recently established paradigm in mitochondrial cell biology. Phylogenomic profiling of genes also points to a conserved role for TbERV1 in cytosolic Fe-S cluster assembly. Conversely, loss of genes implicated in precursor delivery for cytosolic Fe-S assembly in Entamoeba, Trichomonas, and Giardia suggests fundamental differences in intracellular trafficking pathways for activated iron or sulfur species in anaerobic versus aerobic eukaryotes.

Zobrazit více v PubMed

Herrmann JM, Riemer J. 2012. Mitochondrial disulfide relay: redox-regulated protein import into the intermembrane space. J. Biol. Chem. 287:4426–4433 PubMed PMC

Lange H, Lisowsky T, Gerber J, Muhlenhoff U, Kispal G, Lill R. 2001. An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins. EMBO Rep. 2:715–720 PubMed PMC

Lill R. 2009. Function and biogenesis of iron-sulphur proteins. Nature 460:831–838 PubMed

Netz DJ, Stumpfig M, Dore C, Muhlenhoff U, Pierik AJ, Lill R. 2010. Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis. Nat. Chem. Biol. 6:758–765 PubMed

Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJ, Pierik AJ, Wohlschlegel JA, Lill R. 2012. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 337:195–199 PubMed PMC

Allen JW, Ferguson SJ, Ginger ML. 2008. Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for stepwise evolution of the MIA pathway for import of cysteine-rich proteins. FEBS Lett. 582:2817–2825 PubMed

Carrie C, Murcha MW, Whelan J. 2010. An in silico analysis of the mitochondrial protein import apparatus of plants. BMC Plant Biol. 10:249 doi:10.1186/1471-2229-10-249. PubMed DOI PMC

Eckers E, Cyrklaff M, Simpson L, Deponte M. 2012. Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries. Biol. Chem. 393:513–524 PubMed

Harsman A, Niemann M, Pusnik M, Schmidt O, Burmann BM, Hiller S, Meisinger C, Schneider A, Wagner R. 2012. Bacterial origin of a mitochondrial outer membrane protein translocase: new perspectives from comparative single channel electrophysiology. J. Biol. Chem. 287:31437–31445 PubMed PMC

Pusnik M, Schmidt O, Perry AJ, Oeljeklaus S, Niemann M, Warscheid B, Lithgow T, Meisinger C, Schneider A. 2011. Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr. Biol. 21:1738–1743 PubMed

Embley TM, Martin W. 2006. Eukaryotic evolution, changes and challenges. Nature 440:623–630 PubMed

Katz LA. 2012. Origin and diversification of eukaryotes. Annu. Rev. Microbiol. 66:411–427 PubMed

Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ. 2009. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.” Proc. Natl. Acad. Sci. U. S. A. 106:3859–3864 PubMed PMC

Cavalier-Smith T. 2010. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol. Lett. 6:342–345 PubMed PMC

Miroux B, Walker JE. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels, J. Mol. Biol. 260:289–298 PubMed

Fulop V, Sam KA, Ferguson SJ, Ginger ML, Allen JW. 2009. Structure of a trypanosomatid mitochondrial cytochrome c with heme attached via only one thioether bond and implications for the substrate recognition requirements of heme lyase. FEBS J. 276:2822–2832 PubMed

Faeder EJ, Siegel LM. 1973. A rapid micromethod for determination of FMN and FAD in mixtures. Anal. Biochem. 53:332–336 PubMed

Wirtz E, Leal S, Ochatt C, Cross GA. 1999. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99:89–101 PubMed

Brun R, Schonenberger M. 1979. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 36:289–292 PubMed

Hirumi H, Hirumi K. 1989. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 75:985–989 PubMed

Wickstead B, Ersfeld K, Gull K. 2002. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 125:211–216 PubMed

Vondrušková E, van den Burg J, Zíková A, Ernst NL, Stuart K, Benne R, Lukeš J. 2005. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J. Biol. Chem. 280:2429–2438 PubMed

Burkard G, Fragoso CM, Roditi I. 2007. Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 153:220–223 PubMed

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402 PubMed PMC

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948 PubMed

Letunic I, Doerks T, Bork P. 2012. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40:D302–D305 PubMed PMC

Bihlmaier K, Mesecke N, Terziyska N, Bien M, Hell K, Herrmann JM. 2007. The disulfide relay system of mitochondria is connected to the respiratory chain. J. Cell Biol. 179:389–395 PubMed PMC

Dabir DV, Leverich EP, Kim SK, Tsai FD, Hirasawa M, Knaff DB, Koehler CM. 2007. A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J. 26:4801–4811 PubMed PMC

Levitan A, Danon A, Lisowsky T. 2004. Unique features of plant mitochondrial sulfhydryl oxidase. J. Biol. Chem. 279:20002–20008 PubMed

Ang SK, Lu H. 2009. Deciphering structural and functional roles of individual disulfide bonds of the mitochondrial sulfhydryl oxidase Erv1p. J. Biol. Chem. 284:28754–28761 PubMed PMC

Rodriguez-Roldan V, Garcia-Heredia JM, Navarro JA, Hervas M, De la Cerda B, Molina-Heredia FP, De la Rosa MA. 2006. A comparative kinetic analysis of the reactivity of plant, horse, and human respiratory cytochrome c towards cytochrome c oxidase. Biochem. Biophys. Res. Commun. 346:1108–1113 PubMed

Allen JW, Ginger ML, Ferguson SJ. 2004. Maturation of the unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in trypanosomatids must occur through a novel biogenesis pathway. Biochem. J. 383:537–542 PubMed PMC

Ginger ML, Sam KA, Allen JW. 2012. Probing why trypanosomes assemble atypical cytochrome c with an AxxCH haem-binding motif instead of CxxCH. Biochem. J. 448:253–260 PubMed

Fass D. 2008. The Erv family of sulfhydryl oxidases. Biochim. Biophys. Acta 1783:557–566 PubMed

Hofhaus G, Lee JE, Tews I, Rosenberg B, Lisowsky T. 2003. The N-terminal cysteine pair of yeast sulfhydryl oxidase Erv1p is essential for in vivo activity and interacts with the primary redox centre. Eur. J. Biochem. 270:1528–1535 PubMed

Wu CK, Dailey TA, Dailey HA, Wang BC, Rose JP. 2003. The crystal structure of augmenter of liver regeneration: a mammalian FAD-dependent sulfhydryl oxidase. Protein Sci. 12:1109–1118 PubMed PMC

Vitu E, Bentzur M, Lisowsky T, Kaiser CA, Fass D. 2006. Gain of function in an ERV/ALR sulfhydryl oxidase by molecular engineering of the shuttle disulfide. J. Mol. Biol. 362:89–101 PubMed

Sevier CS, Kaiser CA. 2006. Disulfide transfer between two conserved cysteine pairs imparts selectivity to protein oxidation by Ero1. Mol. Biol. Cell 17:2256–2266 PubMed PMC

Vala A, Sevier CS, Kaiser CA. 2005. Structural determinants of substrate access to the disulfide oxidase Erv2p. J. Mol. Biol. 354:952–966 PubMed

Banci L, Bertini I, Calderone V, Cefaro C, Ciofi-Baffoni S, Gallo A, Kallergi E, Lionaki E, Pozidis C, Tokatlidis K. 2011. Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proc. Natl. Acad. Sci. U. S. A. 108:4811–4816 PubMed PMC

Bien M, Longen S, Wagener N, Chwalla I, Herrmann JM, Riemer J. 2010. Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Mol. Cell 37:516–528 PubMed

Becher D, Kricke J, Stein G, Lisowsky T. 1999. A mutant for the yeast scERV1 gene displays a new defect in mitochondrial morphology and distribution. Yeast 15:1171–1181 PubMed

Stojanovski D, Rissler M, Pfanner N, Meisinger C. 2006. Mitochondrial morphology and protein import—a tight connection? Biochim. Biophys. Acta 1763:414–421 PubMed

Long S, Jirků M, Mach J, Ginger ML, Šuták R, Richardson D, Tachezy J, Lukeš J. 2008. Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Mol. Microbiol. 69:94–109 PubMed

Long S, Changmai P, Tsaousis AD, Skalický T, Verner Z, Wen YZ, Roger AJ, Lukeš J. 2011. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues. Mol. Microbiol. 81:1403–1418 PubMed

Kispal G, Csere P, Prohl C, Lill R. 1999. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18:3981–3989 PubMed PMC

Bruske EI, Sendfeld F, Schneider A. 2009. Thiolated tRNAs of Trypanosoma brucei are imported into mitochondria and dethiolated after import. J. Biol. Chem. 284:36491–36499 PubMed PMC

Huynen MA, Snel B, Bork P, Gibson TJ. 2001. The phylogenetic distribution of frataxin indicates a role in iron-sulfur cluster protein assembly. Hum. Mol. Genet. 10:2463–2468 PubMed

Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ. 2010. The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat. Commun. 1:77 doi:10.1038/ncomms1082. PubMed DOI PMC

Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP. 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453 PubMed

Soler N, Delagoutte E, Miron S, Facca C, Baille D, D'Autreaux B, Craescu G, Frapart YM, Mansuy D, Baldacci G, Huang ME, Vernis L. 2011. Interaction between the reductase Tah18 and highly conserved Fe-S containing Dre2 C-terminus is essential for yeast viability. Mol. Microbiol. 82:54–67 PubMed

Carrie C, Giraud E, Duncan O, Xu L, Wang Y, Huang S, Clifton R, Murcha M, Filipovska A, Rackham O, Vrielink A, Whelan J. 2010. Conserved and novel functions for Arabidopsis thaliana MIA40 in assembly of proteins in mitochondria and peroxisomes. J. Biol. Chem. 285:36138–36148 PubMed PMC

Gentle IE, Perry AJ, Alcock FH, Likic VA, Dolezal P, Ng ET, Purcell AW, McConnville M, Naderer T, Chanez AL, Charriere F, Aschinger C, Schneider A, Tokatlidis K, Lithgow T. 2007. Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space. Mol. Biol. Evol. 24:1149–1160 PubMed

Yang ZR, Thomson R, McNeil P, Esnouf RM. 2005. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376 PubMed

Farrell SR, Thorpe C. 2005. Augmenter of liver regeneration: a flavin-dependent sulfhydryl oxidase with cytochrome c reductase activity. Biochemistry 44:1532–1541 PubMed

Gnaiger E, Kuznetsov AV. 2002. Mitochondrial respiration at low levels of oxygen and cytochrome c. Biochem. Soc. Trans. 30:252–258 PubMed

Jones DP. 1986. Intracellular diffusion gradients of O2 and ATP. Am. J. Physiol. 250:C663–C675 PubMed

Hellemond JJ, Bakker BM, Tielens AG. 2005. Energy metabolism and its compartmentation in Trypanosoma brucei. Adv. Microb. Physiol. 50:199–226 PubMed

Forman HJ, Azzi A. 1997. On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J. 11:374–375 PubMed

Oursler MJ, Bradley EW, Elfering SL, Giulivi C. 2005. Native, not nitrated, cytochrome c and mitochondria-derived hydrogen peroxide drive osteoclast apoptosis. Am. J. Physiol. Cell Physiol. 288:C156–C168 PubMed

Dean S, Marchetti R, Kirk K, Matthews KR. 2009. A surface transporter family conveys the trypanosome differentiation signal. Nature 459:213–217 PubMed PMC

Spitznagel D, Ebikeme C, Biran M, Nic a' Bhaird N, Bringaud F, Henehan GT, Nolan DP. 2009. Alanine aminotransferase of Trypanosoma brucei—a key role in proline metabolism in procyclic life forms. FEBS J. 276:7187–7199 PubMed

Coustou V, Biran M, Besteiro S, Riviere L, Baltz T, Franconi JM, Bringaud F. 2006. Fumarate is an essential intermediary metabolite produced by the procyclic Trypanosoma brucei. J. Biol. Chem. 281:26832–26846 PubMed

Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, Šedinová M, Smíšková K, Novotný M, Beltrán NC, Hrdý I, Lithgow T, Tachezy J. 2011. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 6:e24428 doi:10.1371/journal.pone.0024428. PubMed DOI PMC

Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76:444–495 PubMed PMC

Shiflett AM, Johnson PJ. 2010. Mitochondrion-related organelles in eukaryotic protists. Annu. Rev. Microbiol. 64:409–429 PubMed PMC

Šuták R, Doležal P, Fiumera HL, Hrdý I, Dancis A, Delgadillo-Correa M, Johnson PJ, Muller M, Tachezy J. 2004. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc. Natl. Acad. Sci. U. S. A. 101:10368–10373 PubMed PMC

Tovar J, Leon-Avila G, Sanchez LB, Šuták R, Tachezy J, van der Giezen M, Hernandez M, Muller M, Lucocq JM. 2003. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176 PubMed

Tsaousis AD, Ollagnier de Choudens S, Gentekaki E, Long S, Gaston D, Stechmann A, Vinella D, Py B, Fontecave M, Barras F, Lukeš J, Roger AJ. 2012. Evolution of Fe/S cluster biogenesis in the anaerobic parasite Blastocystis. Proc. Natl. Acad. Sci. U. S. A. 109:10426–10431 PubMed PMC

Ali V, Shigeta Y, Tokumoto U, Takahashi Y, Nozaki T. 2004. An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J. Biol. Chem. 279:16863–16874 PubMed

Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, Henze K, Tovar J. 2010. Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell. Microbiol. 12:331–342 PubMed

van der Giezen M, Cox S, Tovar J. 2004. The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol. Biol. 4:7 doi:10.1186/1471-2148-4-7. PubMed DOI PMC

Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C. 2010. Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy. Biochemistry 49:6737–6745 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...