The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21935410
PubMed Central
PMC3174187
DOI
10.1371/journal.pone.0024428
PII: PONE-D-11-09746
Knihovny.cz E-zdroje
- MeSH
- biologický transport fyziologie MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- gelová chromatografie MeSH
- membránové proteiny chemie metabolismus MeSH
- mitochondrie metabolismus MeSH
- molekulární sekvence - údaje MeSH
- organely metabolismus MeSH
- poriny metabolismus MeSH
- protozoální proteiny chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- Trichomonas vaginalis metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- poriny MeSH
- protozoální proteiny MeSH
Trichomonas vaginalis is a parasitic protist of the Excavata group. It contains an anaerobic form of mitochondria called hydrogenosomes, which produce hydrogen and ATP; the majority of mitochondrial pathways and the organellar genome were lost during the mitochondrion-to-hydrogenosome transition. Consequently, all hydrogenosomal proteins are encoded in the nucleus and imported into the organelles. However, little is known about the membrane machineries required for biogenesis of the organelle and metabolite exchange. Using a combination of mass spectrometry, immunofluorescence microscopy, in vitro import assays and reverse genetics, we characterized the membrane proteins of the hydrogenosome. We identified components of the outer membrane (TOM) and inner membrane (TIM) protein translocases include multiple paralogs of the core Tom40-type porins and Tim17/22/23 channel proteins, respectively, and uniquely modified small Tim chaperones. The inner membrane proteins TvTim17/22/23-1 and Pam18 were shown to possess conserved information for targeting to mitochondrial inner membranes, but too divergent in sequence to support the growth of yeast strains lacking Tim17, Tim22, Tim23 or Pam18. Full complementation was seen only when the J-domain of hydrogenosomal Pam18 was fused with N-terminal region and transmembrane segment of the yeast homolog. Candidates for metabolite exchange across the outer membrane were identified including multiple isoforms of the β-barrel proteins, Hmp35 and Hmp36; inner membrane MCF-type metabolite carriers were limited to five homologs of the ATP/ADP carrier, Hmp31. Lastly, hydrogenosomes possess a pathway for the assembly of C-tail-anchored proteins into their outer membrane with several new tail-anchored proteins being identified. These results show that hydrogenosomes and mitochondria share common core membrane components required for protein import and metabolite exchange; however, they also reveal remarkable differences that reflect the functional adaptation of hydrogenosomes to anaerobic conditions and the peculiar evolutionary history of the Excavata group.
Zobrazit více v PubMed
Hrdy I, Tachezy J, Müller M. Metabolism of trichomonad hydrogenosomes. In: Tachezy J, editor. Hydrogenosomes and Mitosomes:Mitochondria of Anaerobic Euakryotes. Berlin, Heidelberg: Springer-Verlag; 2008. pp. 114–145.
Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Phil Trans Roy Soc B-Biol Sci. 2010;365:713–727. PubMed PMC
Clemens DL, Johnson PJ. Failure to detect DNA in hydrogenosomes of Trichomonas vaginalis by nick translation and immunomicroscopy. Mol Biochem Parasitol. 2000;106:307–313. PubMed
Adams KL, Palmer JD. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol. 2003;29:380–395. PubMed
Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341(Pt 2):233–249. PubMed PMC
Kunji ER. The role and structure of mitochondrial carriers. FEBS Lett. 2004;564:239–244. PubMed
el Moualij B, Duyckaerts C, Lamotte-Brasseur J, Sluse FE. Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae. Yeast. 1997;13:573–581. PubMed
Palmieri F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch. 2004;447:689–709. PubMed
Palmieri F, Pierri CL. Mitochondrial metabolite transport. Essays Biochem. 2010;47:37–52. PubMed
Picault N, Hodges M, Palmieri L, Palmieri F. The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci. 2004;9:138–146. PubMed
Palmieri F, Bisaccia F, Capobianco L, Dolce V, Fiermonte G, et al. Mitochondrial metabolite transporters. Biochim Biophys Acta. 1996;1275:127–132. PubMed
Belenkiy R, Haefele A, Eisen MB, Wohlrab H. The yeast mitochondrial transport proteins: new sequences and consensus residues, lack of direct relation between consensus residues and transmembrane helices, expression patterns of the transport protein genes, and protein-protein interactions with other proteins. Biochim Biophys Acta. 2000;1467:207–218. PubMed
Millar AH, Heazlewood JL. Genomic and proteomic analysis of mitochondrial carrier proteins in Arabidopsis. Plant Physiol. 2003;131:443–453. PubMed PMC
Dolezal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science. 2006;313:314–318. PubMed
Schneider A, Bursac D, Lithgow T. The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol. 2008;18:12–18. PubMed
Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–644. PubMed PMC
Koehler CM. New developments in mitochondrial assembly. Annu Rev Cell Dev Biol. 2004;20:309–335. PubMed
Gabriel K, Pfanner N. The mitochondrial machinery for import of precursor proteins. Methods Mol Biol. 2007;390:99–117. PubMed
Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007;76:723–749. PubMed
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315:207–212. PubMed PMC
Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plumper E, et al. Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol. 2000;20:2488–2497. PubMed PMC
van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, et al. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO J. 2002;21:572–579. PubMed PMC
Voncken F, Boxma B, Tjaden J, Akhmanova A, Huynen M, et al. Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol. 2002;44:1441–1454. PubMed
Tjaden J, Haferkamp I, Boxma B, Tielens AG, Huynen M, et al. A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol Microbiol. 2004;51:1439–1446. PubMed
Bradley PJ, Lahti CJ, Plumper E, Johnson PJ. Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J. 1997;16:3484–3493. PubMed PMC
Smid O, Matuskova A, Harris SR, Kucera T, Novotny M, et al. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 2008;4:e1000243. PubMed PMC
Mentel M, Zimorski V, Haferkamp P, Martin W, Henze K. Protein import into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal targeting signals: a case study of thioredoxin reductases. Eukaryot Cell. 2008;7:1750–1757. PubMed PMC
Robinson AJ, Kunji ER. Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci USA. 2006;103:2617–2622. PubMed PMC
Egan B, Beilharz T, George R, Isenmann S, Gratzer S, et al. Targeting of tail-anchored proteins to yeast mitochondria in vivo. FEBS Lett. 1999;451:243–248. PubMed
Isenmann S, Khew-Goodall Y, Gamble J, Vadas M, Wattenberg BW. A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol Biol Cell. 1998;9:1649–1660. PubMed PMC
Horie C, Suzuki H, Sakaguchi M, Mihara K. Characterization of signal that directs C-tail-anchored proteins to mammalian mitochondrial outer membrane. Mol Biol Cell. 2002;13:1615–1625. PubMed PMC
Pusnik M, Charriere F, Maser P, Waller RF, Dagley MJ, et al. The single mitochondrial porin of Trypanosoma brucei is the main metabolite transporter in the outer mitochondrial membrane. Mol Biol Evol. 2009;26:671–680. PubMed
Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, et al. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science. 2008;321:1206–1210. PubMed PMC
Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, et al. Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA. 2008;105:15370–15375. PubMed PMC
Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M, et al. Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell. 2008;132:1011–1024. PubMed
Dyall SD, Lester DC, Schneider RE, Delgadillo-Correa MG, Plumper E, et al. Trichomonas vaginalis Hmp35, a putative pore-forming hydrogenosomal membrane protein, can form a complex in yeast mitochondria. J Biol Chem. 2003;278:30548–30561. PubMed
Curran SP, Leuenberger D, Schmidt E, Koehler CM. The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. J Cell Biol. 2002;158:1017–1027. PubMed PMC
Curran SP, Leuenberger D, Oppliger W, Koehler CM. The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. EMBO J. 2002;21:942–953. PubMed PMC
Koehler CM. The small Tim proteins and the twin Cx3C motif. Trends Biochem Sci. 2004;29:1–4. PubMed
Gentle IE, Perry AJ, Alcock FH, Likic VA, Dolezal P, et al. Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space. Mol Biol Evol. 2007;24:1149–1160. PubMed
Rassow J, Dekker PJ, van WS, Meijer M, Soll J. The preprotein translocase of the mitochondrial inner membrane: function and evolution. J Mol Biol. 1999;286:105–120. PubMed
Murcha MW, Lister R, Ho AYY, Whelan J. Identification, expression, and import of components 17 and 23 of the inner mitochondrial membrane translocase from Arabidopsis. Plant Physiology. 2003;131:1737–1747. PubMed PMC
Kaldi K, Bauer MF, Sirrenberg C, Neupert W, Brunner M. Biogenesis of Tim23 and Tim17, integral components of the TIM machinery for matrix-targeted preproteins. EMBO J. 1998;17:1569–1576. PubMed PMC
Dolezal P, Smid O, Rada P, Zubacova Z, Bursac D, et al. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci USA. 2005;102:10924–10929. PubMed PMC
Clements A, Bursac D, Gatsos X, Perry AJ, Civciristov S, et al. The reducible complexity of a mitochondrial molecular machine. Proc Natl Acad Sci USA. 2009;106:15791–15795. PubMed PMC
Budzinska M, Galganska H, Karachitos A, Wojtkowska M, Kmita H. The TOM complex is involved in the release of superoxide anion from mitochondria. J Bioenerg Biomembr. 2009;41:361–367. PubMed
Kmita H, Budzinska M. Involvement of the TOM complex in external NADH transport into yeast mitochondria depleted of mitochondrial porin1. Biochim Biophys Acta. 2000;1509:86–94. PubMed
Borden KL, Boddy MN, Lally J, O'Reilly NJ, Martin S, et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 1995;14:1532–1541. PubMed PMC
Vanacova S, Rasoloson D, Razga J, Hrdy I, Kulda J, Tachezy J. Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology-SGM. 2001;147:53–62. PubMed
Suchan P, Vyoral D, Petrak J, Sut'ak R, Rasoloson D, et al. Incorporation of iron into Tritrichomonas foetus cell compartments reveals ferredoxin as a major iron-binding protein in hydrogenosomes. Microbiology-SGM. 2003;149:1911–1921. PubMed
Jedelsky PL, Dolezal P, Rada P, Pyrih J, Smid O, et al. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6:e17285. PubMed PMC
Carrie C, Murcha MW, Whelan J. An in silico analysis of the mitochondrial protein import apparatus of plants. BMC Plant Biology. 2010;10 PubMed PMC
Burri L, Williams BA, Bursac D, Lithgow T, Keeling PJ. Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci USA. 2006;103:15916–15920. PubMed PMC
Mukherjee M, Brown MT, McArthur AG, Johnson PJ. Proteins of the glycine decarboxylase complex in the hydrogenosome of Trichomonas vaginalis. Eukaryot Cell. 2006;5:2062–2071. PubMed PMC
Morada M, Smid O, Hampl V, Sutak R, Lam B, et al. Hydrogenosome-localization of arginine deiminase in Trichomonas vaginalis. Mol Biochem Parasitol. 2011;176:51–54. PubMed PMC
Simpson AG, Roger AJ. The real ‘kingdoms’ of eukaryotes. Curr Biol. 2004;14:R693–R696. PubMed
Panigrahi AK, Ogata Y, Zikova A, Anupama A, Dalley RA, et al. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. 2009;9:434–450. PubMed PMC
Perry AJ, Hulett JM, Likic VA, Lithgow T, Gooley PR. Convergent evolution of receptors for protein import into mitochondria. Curr Biol. 2006;16:221–229. PubMed
Murcha MW, Elhafez D, Lister R, Tonti-Filippini J, Baumgartner M, et al. Characterization of the preprotein and amino acid transporter gene family in Arabidopsis. Plant Physiol. 2007;143:199–212. PubMed PMC
Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, et al. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci USA. 2004;101:10368–10373. PubMed PMC
Bordier C. Phase-separation of integral membrane-proteins in Triton X-114 solution. J Biol Chem. 1981;256:1604–1607. PubMed
Honys D, Renak D, Fecikova J, Jedelsky PL, Nebesarova J, et al. Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization. J Proteome Res. 2009;8:2015–2031. PubMed
Likic VA, Dolezal P, Celik N, Dagley M, Lithgow T. Using hidden markov models to discover new protein transport machines. Methods Mol Biol. 2010;619:271–284. PubMed
Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature. 2004;432:618–622. PubMed
Drmota T, Proost P, Van Ranst M, Weyda F, Kulda J, et al. Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis: purification and characterization. Mol Biochem Parasitol. 1996;83:221–234. PubMed
Handa N, Kishishita S, Morita S, Akasaka R, Jin ZM, et al. Structure of the human Tim44 C-terminal domain in complex with pentaethylene glycol: ligand-bound form. Acta Crystallogr Sec D-Biol Crystallogr. 2007;63:1225–1234. PubMed
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. PubMed PMC
Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. PubMed
Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G. Homology modeling, model and software evaluation: three related resources. Bioinformatics. 1998;14:523–528. PubMed
Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–W410. PubMed PMC
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA. 2001;98:10037–10041. PubMed PMC
Chan NC, Lithgow T. The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Mol Biol Cell. 2008;19:126–136. PubMed PMC
Bursac D, Lithgow T. Jid1 is a J-protein functioning in the mitochondrial matrix, unable to directly participate in endoplasmic reticulum associated protein degradation. FEBS Lett. 2009;583:2954–2958. PubMed
A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis
Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans
Reduced mitochondria provide an essential function for the cytosolic methionine cycle
Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis
Probing the Biology of Giardia intestinalis Mitosomes Using In Vivo Enzymatic Tagging
Giardia intestinalis incorporates heme into cytosolic cytochrome b₅
Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes
Live imaging of mitosomes and hydrogenosomes by HaloTag technology