An Advanced System of the Mitochondrial Processing Peptidase and Core Protein Family in Trypanosoma brucei and Multiple Origins of the Core I Subunit in Eukaryotes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23563972
PubMed Central
PMC3673636
DOI
10.1093/gbe/evt056
PII: evt056
Knihovny.cz E-zdroje
- Klíčová slova
- bc1 complex, evolution, mitochondrial processing peptidase, mitochondrial targeting sequence, trypanosome,
- MeSH
- Eukaryota genetika MeSH
- fylogeneze MeSH
- metaloendopeptidasy genetika MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie genetika MeSH
- molekulární evoluce MeSH
- MPP peptidasa MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- Trypanosoma brucei brucei genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- metaloendopeptidasy MeSH
- mitochondriální proteiny MeSH
Mitochondrial processing peptidase (MPP) consists of α and β subunits that catalyze the cleavage of N-terminal mitochondrial-targeting sequences (N-MTSs) and deliver preproteins to the mitochondria. In plants, both MPP subunits are associated with the respiratory complex bc1, which has been proposed to represent an ancestral form. Subsequent duplication of MPP subunits resulted in separate sets of genes encoding soluble MPP in the matrix and core proteins (cp1 and cp2) of the membrane-embedded bc1 complex. As only α-MPP was duplicated in Neurospora, its single β-MPP functions in both MPP and bc1 complexes. Herein, we investigated the MPP/core protein family and N-MTSs in the kinetoplastid Trypanosoma brucei, which is often considered one of the most ancient eukaryotes. Analysis of N-MTSs predicted in 336 mitochondrial proteins showed that trypanosomal N-MTSs were comparable with N-MTSs from other organisms. N-MTS cleavage is mediated by a standard heterodimeric MPP, which is present in the matrix of procyclic and bloodstream trypanosomes, and its expression is essential for the parasite. Distinct Genes encode cp1 and cp2, and in the bloodstream forms the expression of cp1 is downregulated along with the bc1 complex. Phylogenetic analysis revealed that all eukaryotic lineages include members with a Neurospora-type MPP/core protein family, whereas cp1 evolved independently in metazoans, some fungi and kinetoplastids. Evolution of cp1 allowed the independent regulation of respiration and protein import, which is essential for the procyclic and bloodstream forms of T. brucei. These results indicate that T. brucei possesses a highly derived MPP/core protein family that likely evolved in response to its complex life cycle and does not appear to have an ancient character proposed earlier for this eukaryote.
Zobrazit více v PubMed
Acestor N, et al. Trypanosoma brucei mitochondrial respiratome: composition and organization in procyclic form. Mol Cell Proteomics. 2011;10:M110. PubMed PMC
Adl SM, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–493. PubMed PMC
Allen JW, et al. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS J. 2008;275:2385–2402. PubMed
Bauer MF, Hofmann S, Neupert W, Brunner M. Protein translocation into mitochondria: the role of TIM complexes. Trends Cell Biol. 2000;10:25–31. PubMed
Bertrand KI, Hajduk SL. Import of a constitutively expressed protein into mitochondria from procyclic and bloodstream forms of Trypanosoma brucei. Mol Biochem Parasit. 2000;106:249–260. PubMed
Besteiro S, Barrett MP, Riviere L, Bringaud F. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends Parasitol. 2005;21:185–191. PubMed
Braun HP, Schmitz UK. Are the ‘core' proteins of the mitochondrial bc1 complex evolutionary relics of a processing protease. Trends Biochem Sci. 1995;20:171–175. PubMed
Braun HP, Schmitz UK. The mitochondrial processing peptidase. Int J Biochem Cell B. 1997;29:1043–1045. PubMed
Burri L, Keeling PJ. Protein targeting in parasites with cryptic mitochondria. Int J Parasitol. 2007;37:265–272. PubMed
Burri L, Williams BAP, Bursac D, Lithgow T, Keeling PJ. Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci U S A. 2006;103:15916–15920. PubMed PMC
Cavalier-Smith T. The origin of eukaryotic and archaebacterial cells. Ann N Y Acad Sci. 1987;503:17–54. PubMed
Cavalier-Smith T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett. 2010;6:342–345. PubMed PMC
Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–644. PubMed PMC
Chaudhuri M, Ajayi W, Temple S, Hill GC. Identification and partial purification of a stage-specific 33 kDa mitochondrial protein as the alternative oxidase of the Trypanosoma brucei brucei bloodstream trypomastigotes. J Eukaryot Microbiol. 1995;42:467–472. PubMed
Clayton CE, Häusler T, Blattner J. Protein trafficking in kinetoplastid protozoa. Microbiol Rev. 1995;59:325–344. PubMed PMC
Clayton CE, Michels P. Metabolic compartmentation in African trypanosomes. Parasitol Today. 1996;12:465–471. PubMed
Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10:210. PubMed PMC
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. PubMed PMC
Cui JY, Mukai K, Saeki K, Matsubara H. Molecular cloning and nucleotide sequences of cDNAs encoding subunits I, II, and IX of Euglena gracilis mitochondrial complex III. J Biochem. 1994;115:98–107. PubMed
Dagley MJ, et al. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol. 2009;26:1941–1947. PubMed PMC
Deng K, Shenoy SK, Tso SC, Yu L, Yu CA. Reconstitution of mitochondrial processing peptidase from the core proteins (subunits I and II) of bovine heart mitochondrial cytochrome bc(1) complex. J Biol Chem. 2001;276:6499–6505. PubMed
Desy S, Schneider A, Mani J. Trypanosoma brucei has a canonical mitochondrial processing peptidase. Mol Biochem Parasit. 2012;185:161–164. PubMed
Dvorakova-Hola K, et al. Glycine-rich loop of mitochondrial processing peptidase alpha-subunit is responsible for substrate recognition by a mechanism analogous to mitochondrial receptor Tom20. J Mol Biol. 2010;396:1197–1210. PubMed
Edgar RC. Quality measures for protein alignment benchmarks. Nucleic Acids Res. 2010;38:2145–2153. PubMed PMC
Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440:623–630. PubMed
Eriksson A, Sjoling S, Glaser E. Characterization of the bifunctional mitochondrial processing peptidase (MPP)/bc1 complex in Spinacia oleracea. J Bioenerg Biomembr. 1996;28:285–292. PubMed
Flaspohler JA, Jensen BC, Saveria T, Kifer CT, Parsons M. A novel protein kinase localized to lipid droplets is required for droplet biogenesis in trypanosomes. Eukaryot Cell. 2010;9:1702–1710. PubMed PMC
Gakh E, Cavadini P, Isaya G. Mitochondrial processing peptidases. Biochim Biophys Acta. 2002;1592:63–77. PubMed
Gavel Y, von HG. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng. 1990;4:33–37. PubMed
Geli V. Functional reconstitution in Escherichia coli of the yeast mitochondrial matrix peptidase from its 2 inactive subunits. Proc Natl Acad Sci U S A. 1993;90:6247–6251. PubMed PMC
Gencic S, Schagger H, Vonjagow G. Core I protein of bovine ubiquinol-cytochrome-c Reductase; an additional member of the mitochondrial-protein-processing family. Cloning of bovine core I and core II cDNAs and primary structure of the proteins. Eur J Biochem. 1991;199:123–131. PubMed
Glaser E, Dessi P. Integration of the mitochondrial-processing peptidase into the cytochrome bc1 complex in plants. J Bioenerg Biomembr. 1999;31:259–274. PubMed
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704. PubMed
Hauser R, Pypaert M, Hausler T, Horn EK, Schneider A. In vitro import of proteins into mitochondria of Trypanosoma brucei and Leishmania tarentolae. J Cell Sci. 1996;109:517–523. PubMed
Häusler T, Stierhof YD, Blattner J, Clayton C. Conservation of mitochondrial targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas. Eur J Cell Biol. 1997;73:240–251. PubMed
Hirumi H, Hirumi K. Continuous cultivation of animal-infective bloodstream forms of an East African Trypanosoma congolense stock. Ann Trop Med Parasitol. 1984;78:327–330. PubMed
Hordijk W, Gascuel O. Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood. Bioinformatics. 2005;21:4338–4347. PubMed
Huang SB, Taylor NL, Whelan J, Millar AH. Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications, and cleavage motifs. Plant Physiol. 2009;150:1272–1285. PubMed PMC
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. PubMed
Janata J, et al. Substrate evokes translocation of both domains in the mitochondrial processing peptidase alpha-subunit during which the C-terminus acts as a stabilizing element. Biochem Biophys Res Commun. 2004;316:211–217. PubMed
Kitada S, et al. A protein from a parasitic microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J Bacteriol. 2007;189:844–850. PubMed PMC
Kitada S, Shimokata K, Niidome T, Ogishima T, Ito A. A putative metal-binding site in the beta subunit of rat mitochondrial processing peptidase is essential for its catalytic activity. J Biochem. 1995;117:1148–1150. PubMed
Krnacova K, Vesteg M, Hampl V, Vlcek C, Horvath A. Euglena gracilis and trypanosomatids possess common patterns in predicted mitochondrial targeting presequences. J Mol Evol. 2012;75:119–129. PubMed
Lill R, Neupert W. Mechanisms of protein import across the mitochondrial outer membrane. Trends Cell Biol. 1996;6:56–61. PubMed
Long SJ, et al. Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Mol Microbiol. 2008;69:94–109. PubMed
Long SJ, Jirku M, Ayala FJ, Lukes J. Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc Natl Acad Sci U S A. 2008;105:13468–13473. PubMed PMC
Luciano P, Tokatlidis K, Chambre I, Germanique JC, Geli V. The mitochondrial processing peptidase behaves as a zinc-metallopeptidase. J Mol Biol. 1998;280:193–199. PubMed
Madison-Antenucci S, Grams J, Hajduk SL. Editing machines: the complexities of trypanosome RNA editing. Cell. 2002;108:435–438. PubMed
Maruyama Y, Chuma A, Mikami B, Hashimoto W, Murata K. Heterosubunit composition and crystal structures of a novel bacterial M16B metallopeptidase. J Mol Biol. 2011;407:180–192. PubMed
Moriwaki K, Ogishima T, Ito A. Analysis of recognition elements for mitochondrial processing peptidase using artificial amino acids: roles of the intervening portion and proximal arginine. J Biochem. 1999;126:874–878. PubMed
Naamati A, Regev-Rudzki N, Galperin S, Lill R, Pines O. Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J Biol Chem. 2009;284:30200–30208. PubMed PMC
Nagao Y, et al. Glycine-rich region of mitochondrial processing peptidase alpha-subunit is essential for binding and cleavage of the precursor proteins. J Biol Chem. 2000;275:34552–34556. PubMed
Nagayama K, et al. Antisense RNA inhibition of the beta subunit of the Dictyostelium discoideum mitochondrial processing peptidase induces the expression of mitochondrial proteins. Biosci Biotechnol Biochem. 2008;72:1836–1846. PubMed
Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci. 1999;24:34–35. PubMed
Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007;76:723–749. PubMed
Opperdoes FR, Michels PAM. Complex I of trypanosomatidae: does it exist? Trends Parasitol. 2008;24:310–317. PubMed
Panigrahi AK, et al. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. 2009;9:434–450. PubMed PMC
Priest JW, Hajduk SL. The trypanosomatid Rieske iron-sulfur proteins have a cleaved presequence that may direct mitochondrial import. Biochim Biophys Acta. 1995;1269:201–204. PubMed
Pusnik M, et al. The single mitochondrial porin of Trypanosoma brucei is the main metabolite transporter in the outer mitochondrial membrane. Mol Biol Evol. 2009;26:671–680. PubMed
Pusnik M, et al. Mitochondrial preprotein translocase of trypanosomatids has a bacterial origin. Curr Biol. 2011;21:1738–1743. PubMed
Rada P, et al. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One. 2011;6:e24428. PubMed PMC
Schneider A, Bursac D, Lithgow T. The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol. 2008;18:12–18. PubMed
Schneider G, et al. Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. Proteins. 1998;30:49–60. PubMed
Schneider H, Arretz M, Wachter E, Neupert W. Matrix processing peptidase of mitochondria. Structure-function relationships. J Biol Chem. 1990;265:9881–9887. PubMed
Schulte U, et al. A family of mitochondrial proteins involved in bioenergetics and biogenesis. Nature. 1989;339:147–149. PubMed
Shimokata K, et al. Substrate recognition by mitochondrial processing peptidase toward the malate dehydrogenase precursor. J Biochem. 1997;122:1019–1023. PubMed
Smid O, et al. Knock-downs of iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei. J Biol Chem. 2006;281:28679–28686. PubMed
Smid O, et al. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 2008;4: e1000243. PubMed PMC
Smutna T, et al. Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase. Eukaryot Cell. 2009;8:47–55. PubMed PMC
Song MC, Ogishima T, Ito A. Importance of residues carboxyl terminal relative to the cleavage site in substrates of mitochondrial processing peptidase for their specific recognition and cleavage. J Biochem. 1998;124:1045–1049. PubMed
Striebel HM, Rysavy P, Adamec J, Spizek J, Kalousek F. Mutational analysis of both subunits from rat mitochondrial processing peptidase. Arch Biochem Biophys. 1996;335:211–218. PubMed
Taylor AB, et al. Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure. 2001;9:615–625. PubMed
Teixeira PF, Glaser E. Processing peptidases in mitochondria and chloroplasts. Biochim Biophys Acta. 2012;1833:360–370. PubMed
Tsaousis AD, et al. Evolution of Fe/S cluster biogenesis in the anaerobic parasite Blastocystis. Proc Natl Acad Sci U S A. 2012;109:10426–10431. PubMed PMC
Vogtle F, et al. Global analysis of the mitochondrial N-Proteome identifies a processing peptidase critical for protein stability. Cell. 2009;139:428–439. PubMed
Wickstead B, Ersfeld K, Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol Biochem Parasit. 2002;125:211–216. PubMed
Wirtz E, Clayton C. Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science. 1995;268:1179–1183. PubMed
Wirtz E, Leal S, Ochatt C, Cross GAM. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasit. 1999;99:89–101. PubMed
Zara V, Palmisano I, Conte L, Trumpower BL. Further insights into the assembly of the yeast cytochrome bc1 complex based on analysis of single and double deletion mutants lacking supernumerary subunits and cytochrome b. Eur J Biochem. 2004;271:1209–1218. PubMed
Zarsky V, Tachezy J, Dolezal P. Tom40 is likely common to all mitochondria. Curr Biol. 2012;22:R479–R481. PubMed