Trypanosomal mitochondrial intermediate peptidase does not behave as a classical mitochondrial processing peptidase
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29698456
PubMed Central
PMC5919513
DOI
10.1371/journal.pone.0196474
PII: PONE-D-17-42690
Knihovny.cz E-zdroje
- MeSH
- down regulace MeSH
- fluorescenční mikroskopie MeSH
- fylogeneze MeSH
- malá interferující RNA metabolismus MeSH
- metaloendopeptidasy antagonisté a inhibitory klasifikace genetika metabolismus MeSH
- mitochondrie enzymologie MeSH
- MPP peptidasa MeSH
- podjednotky proteinů antagonisté a inhibitory genetika metabolismus MeSH
- respirační komplex IV metabolismus MeSH
- RNA interference MeSH
- sekvence aminokyselin MeSH
- substrátová specifita MeSH
- Trypanosoma brucei brucei metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá interferující RNA MeSH
- metaloendopeptidasy MeSH
- mitochondrial intermediate peptidase MeSH Prohlížeč
- podjednotky proteinů MeSH
- respirační komplex IV MeSH
Upon their translocation into the mitochondrial matrix, the N-terminal pre-sequence of nuclear-encoded proteins undergoes cleavage by mitochondrial processing peptidases. Some proteins require more than a single processing step, which involves several peptidases. Down-regulation of the putative Trypanosoma brucei mitochondrial intermediate peptidase (MIP) homolog by RNAi renders the cells unable to grow after 48 hours of induction. Ablation of MIP results in the accumulation of the precursor of the trypanosomatid-specific trCOIV protein, the largest nuclear-encoded subunit of the cytochrome c oxidase complex in this flagellate. However, the trCOIV precursor of the same size accumulates also in trypanosomes in which either alpha or beta subunits of the mitochondrial processing peptidase (MPP) have been depleted. Using a chimeric protein that consists of the N-terminal sequence of a putative subunit of respiratory complex I fused to a yellow fluorescent protein, we assessed the accumulation of the precursor protein in trypanosomes, in which RNAi was induced against the alpha or beta subunits of MPP or MIP. The observed accumulation of precursors indicates MIP depletion affects the activity of the cannonical MPP, or at least one of its subunits.
Faculty of Science Charles University Prague Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Neupert W. Protein import into mitochondria. Annu Rev Biochem. 1997;66: 863–917. doi: 10.1146/annurev.biochem.66.1.863 PubMed DOI
Schmidt O, Pfanner N, Meisinger C. Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol. 2010;11: 655–667. doi: 10.1038/nrm2959 PubMed DOI
Hildenbeutel M, Habib SJ, Herrmann JM, Rapaport D. New insights into the mechanism of precursor protein insertion into the mitochondrial membranes. Int Rev Cell Mol Biol. 2008;268: 147–190. doi: 10.1016/S1937-6448(08)00805-8 PubMed DOI
Eckers E, Cyrklaff M, Simpson L, Deponte M. Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries. Biol Chem. 2012;393: 513–524. doi: 10.1515/hsz-2011-0255 PubMed DOI
Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138: 628–644. doi: 10.1016/j.cell.2009.08.005 PubMed DOI PMC
Hurt EC, Pesold-Hurt B, Schatz G. The amino-terminal region of an imported mitochondrial precursor polypeptide can direct cytoplasmic dihydrofolate reductase into the mitochondrial matrix. EMBO J. 1984;3: 3149–3156. PubMed PMC
Horwich AL, Kalousek F, Mellman I, Rosenberg LE. A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. EMBO J. 1985;4: 1129–1135. PubMed PMC
Rapaport D. How does the TOM complex mediate insertion of precursor proteins into the mitochondrial outer membrane? J Cell Biol. 2005;171: 419–423. doi: 10.1083/jcb.200507147 PubMed DOI PMC
Kutik S, Guiard B, Meyer HE, Wiedemann N, Pfanner N. Cooperation of translocase complexes in mitochondrial protein import. J Cell Biol. 2007;179: 585–591. doi: 10.1083/jcb.200708199 PubMed DOI PMC
Straub SP, Stiller SB, Wiedemann N, Pfanner N. Dynamic organization of the mitochondrial protein import machinery. Biol Chem. 2016;397: 1097–1114. doi: 10.1515/hsz-2016-0145 PubMed DOI
Schmidt B, Wachter E, Sebald W, Neupert W. Processing peptidase of Neurospora mitochondria. Two-step cleavage of imported ATPase subunit 9. Eur J Biochem. 1984;144: 581–588. PubMed
Adamec J, Kalousek F, Isaya G. 4. Mitochondrial processing peptidase/mitochondrial intermediate peptidase. The Enzymes. 2002;22: 77–100.
Mossmann D, Meisinger C, Vögtle F-N. Processing of mitochondrial presequences. Biochim Biophys Acta. 2012;1819: 1098–1106. doi: 10.1016/j.bbagrm.2011.11.007 PubMed DOI
Hawlitschek G, Schneider H, Schmidt B, Tropschug M, Hartl FU, Neupert W. Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell. 1988;53: 795–806. PubMed
Yang M, Jensen RE, Yaffe MP, Oppliger W, Schatz G. Import of proteins into yeast mitochondria: the purified matrix processing protease contains two subunits which are encoded by the nuclear MAS1 and MAS2 genes. EMBO J. 1988;7: 3857–3862. PubMed PMC
Ou WJ, Ito A, Okazaki H, Omura T. Purification and characterization of a processing protease from rat liver mitochondria. EMBO J. 1989;8: 2605–2612. PubMed PMC
Nunnari J, Fox TD, Walter P. A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science. 1993;262: 1997–2004. doi: 10.1126/science.8266095 PubMed DOI
Vögtle F-N, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, et al. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell. Elsevier Ltd; 2009;139: 428–439. doi: 10.1016/j.cell.2009.07.045 PubMed DOI
Kalousek F, Hendrick JP, Rosenberg LE. Two mitochondrial matrix proteases act sequentially in the processing of mammalian matrix enzymes. Proc Natl Acad Sci USA. 1988;85: 7536–7540. PubMed PMC
Rawlings ND, Barrett AJ. Metallopeptidases and their clans. Handbook of Proteolytic Enzymes; 2013. pp. 325–370.
Kalousek F, Isaya G, Rosenberg LE. Rat liver mitochondrial intermediate peptidase (MIP): purification and initial characterization. EMBO J. 1992;11: 2803–2809. PubMed PMC
Isaya G, Kalousek F, Rosenberg LE. Amino-terminal octapeptides function as recognition signals for the mitochondrial intermediate peptidase. J Biol Chem. 1992;267: 7904–7910. PubMed
Branda SS, Isaya G. Prediction and identification of new natural substrates of the yeast mitochondrial intermediate peptidase. J Biol Chem. 1995;270: 27366–27373. doi: 10.1074/jbc.270.45.27366 PubMed DOI
Isaya G, Kalousek F, Fenton WA, Rosenberg LE. Cleavage of precursors by the mitochondrial processing peptidase requires a compatible mature protein or an intermediate octapeptide. J Cell Biol. 1991;113: 65–76. doi: 10.1083/jcb.113.1.65 PubMed DOI PMC
Branda SS, Yang ZY, Chew A, Isaya G. Mitochondrial intermediate peptidase and the yeast frataxin homolog together maintain mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum Mol Gen. 1999;8: 1099–1110. doi: 10.1093/hmg/8.6.1099 PubMed DOI
Isaya G, Miklos D, Rollins RA. MIP1, a new yeast gene homologous to the rat mitochondrial intermediate peptidase gene, is required for oxidative metabolism in Saccharomyces cerevisiae. Mol Cell Biol. 1994;14: 5603–5616. doi: 10.1128/MCB.14.8.5603 PubMed DOI PMC
Witte C, Jensen RE, Yaffe MP, Schatz G. MAS1, a gene essential for yeast mitochondrial assembly, encodes a subunit of the mitochondrial processing protease. EMBO J. 1988;7: 1439–1447. PubMed PMC
Carrie C, Venne AS, Zahedi RP, Soll J. Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana. J Exp Bot. 2015;66: 2691–2708. doi: 10.1093/jxb/erv064 PubMed DOI PMC
Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59: 429–514. doi: 10.1111/j.1550-7408.2012.00644.x PubMed DOI PMC
Mani J, Desy S, Niemann M, Chanfon A, Oeljeklaus S, Pusnik M, et al. Mitochondrial protein import receptors in Kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat Commun. 2015;6: 6646 doi: 10.1038/ncomms7646 PubMed DOI PMC
Desy S, Schneider A, Mani J. Trypanosoma brucei has a canonical mitochondrial processing peptidase. Mol Biochem Parasitol. 2012;185: 161–164. doi: 10.1016/j.molbiopara.2012.07.005 PubMed DOI
Mach J, Poliak P, Matušková A, Žárský V, Janata J, Lukeš J, et al. An advanced system of the mitochondrial processing peptidase and core protein family in Trypanosoma brucei and multiple origins of the core I subunit in eukaryotes. Genome Biol Evol. 2013;5: 860–875. doi: 10.1093/gbe/evt056 PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10: 210 doi: 10.1186/1471-2148-10-210 PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27: 1164–1165. doi: 10.1093/bioinformatics/btr088 PubMed DOI PMC
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52: 696–704. doi: 10.1080/10635150390235520 PubMed DOI
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17: 754–755. doi: 10.1093/bioinformatics/17.8.754 PubMed DOI
Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci. 1999;24: 34–36. doi: 10.1016/S0968-0004(98)01336-X PubMed DOI
Gavel Y, Heijne von G. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng. 1990;4: 33–37. doi: 10.1093/protein/4.1.33 PubMed DOI
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241: 779–786. doi: 10.1111/j.1432-1033.1996.00779.x PubMed DOI
Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, et al. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. 2009;9: 434–450. doi: 10.1002/pmic.200800477 PubMed DOI PMC
Teixeira PF, Glaser E. Processing peptidases in mitochondria and chloroplasts. Biochim Biophys Acta. 2013;1833: 360–370. doi: 10.1016/j.bbamcr.2012.03.012 PubMed DOI
Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999;99: 89–101. doi: 10.1016/S0166-6851(99)00002-X PubMed DOI
Kovářová J, Horáková E, Changmai P, Vancová M, Lukeš J. Mitochondrial and nucleolar localization of cysteine desulfurase Nfs and the scaffold protein Isu in Trypanosoma brucei. Eukaryot Cell. 2014;13: 353–362. doi: 10.1128/EC.00235-13 PubMed DOI PMC
Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015;5: 140197–140197. doi: 10.1098/rsob.140197 PubMed DOI PMC
Long S, Jirků M, Ayala FJ, Lukeš J. Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc Natl Acad Sci USA. 2008;105: 13468–13473. doi: 10.1073/pnas.0806762105 PubMed DOI PMC
Colasante C, Peña Diaz P, Clayton C, Voncken F. Mitochondrial carrier family inventory of Trypanosoma brucei brucei: Identification, expression and subcellular localisation. Mol Biochem Parasitol. 2009;167: 104–117. doi: 10.1016/j.molbiopara.2009.05.004 PubMed DOI
Hannaert V, Albert MA, Rigden DJ, Giotto M, Thiemann O, Garratt RC, et al. Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. Eur J Biochem. 2003;270: 3205–3213. doi: 10.1046/j.1432-1033.2003.03692.x PubMed DOI
Maslov DA, Zíková A, Kyselová I, Lukeš J. A putative novel nuclear-encoded subunit of the cytochrome c oxidase complex in trypanosomatids. Mol Biochem Parasitol. 2002;125: 113–125. doi: 10.1016/S0166-6851(02)00235-9 PubMed DOI
Isaya G, Sakati WR, Rollins RA, Shen GP, Hanson LC, Ullrich RC, et al. Mammalian mitochondrial intermediate peptidase: structure/function analysis of a new homologue from Schizophyllum commune and relationship to thimet oligopeptidases. Genomics. 1995;28: 450–461. doi: 10.1006/geno.1995.1174 PubMed DOI
Gakh O, Cavadini P, Isaya G. Mitochondrial processing peptidases. Biochim Biophys Acta. 2002;1592: 63–77. doi: 10.1016/S0167-4889(02)00265-3 PubMed DOI
Maguire F, Richards TA. Organelle evolution: a mosaic of “mitochondrial” functions. Curr Biol. 2014;24: R518–20. doi: 10.1016/j.cub.2014.03.075 PubMed DOI
Šmid O, Matušková A, Harris SR, Kučera T, Novotný M, Horváthová L, et al. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog. 2008;4: e1000243 doi: 10.1371/journal.ppat.1000243 PubMed DOI PMC
Miura S, Amaya Y, Mori M. A metalloprotease involved in the processing of mitochondrial precursor proteins. Biochem Biophys Res Commun. 1986;134: 1151–1159. doi: 10.1016/0006-291X(86)90371-2 PubMed DOI
Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ. New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem. 2004;279: 49367–49383. doi: 10.1074/jbc.M406763200 PubMed DOI
Kleffmann T, Russenberger D, Zychlinski von A, Christopher W, Sjölander K, Gruissem W, et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol. 2004;14: 354–362. doi: 10.1016/j.cub.2004.02.039 PubMed DOI
Coustou V, Biran M, Breton M, Guegan F, Rivière L, Plazolles N, et al. Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J Biol Chem. 2008;283: 16342–16354. doi: 10.1074/jbc.M709592200 PubMed DOI
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, et al. Malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol. 2015;315: 73–151. doi: 10.1016/bs.ircmb.2014.11.001 PubMed DOI
Coustou V, Besteiro S, Biran M, Diolez P, Bouchaud V, Voisin P, et al. ATP generation in the Trypanosoma brucei procyclic form: cytosolic substrate level is essential, but not oxidative phosphorylation. J Biol Chem. 2003;278: 49625–49635. doi: 10.1074/jbc.M307872200 PubMed DOI
Vögtle F-N, Prinz C, Kellermann J, Lottspeich F, Pfanner N, Meisinger C. Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol Biol Cell. 2011;22: 2135–2143. doi: 10.1091/mbc.E11-02-0169 PubMed DOI PMC
Adamec J, Gakh O, Spizek J, Kalousek F. Complementation between mitochondrial processing peptidase (MPP) subunits from different species. Arch Biochem Biophys. 1999;370: 77–85. doi: 10.1006/abbi.1999.1397 PubMed DOI
The Remarkable Metabolism of Vickermania ingenoplastis: Genomic Predictions