Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites trichomonas vaginalis and giardia intestinalis

. 2008 Dec ; 4 (12) : e1000243. [epub] 20081219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19096520

Grantová podpora
BB/C006143/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Mitochondrial processing peptidases are heterodimeric enzymes (alpha/betaMPP) that play an essential role in mitochondrial biogenesis by recognizing and cleaving the targeting presequences of nuclear-encoded mitochondrial proteins. The two subunits are paralogues that probably evolved by duplication of a gene for a monomeric metallopeptidase from the endosymbiotic ancestor of mitochondria. Here, we characterize the MPP-like proteins from two important human parasites that contain highly reduced versions of mitochondria, the mitosomes of Giardia intestinalis and the hydrogenosomes of Trichomonas vaginalis. Our biochemical characterization of recombinant proteins showed that, contrary to a recent report, the Trichomonas processing peptidase functions efficiently as an alpha/beta heterodimer. By contrast, and so far uniquely among eukaryotes, the Giardia processing peptidase functions as a monomer comprising a single betaMPP-like catalytic subunit. The structure and surface charge distribution of the Giardia processing peptidase predicted from a 3-D protein model appear to have co-evolved with the properties of Giardia mitosomal targeting sequences, which, unlike classic mitochondrial targeting signals, are typically short and impoverished in positively charged residues. The majority of hydrogenosomal presequences resemble those of mitosomes, but longer, positively charged mitochondrial-type presequences were also identified, consistent with the retention of the Trichomonas alphaMPP-like subunit. Our computational and experimental/functional analyses reveal that the divergent processing peptidases of Giardia mitosomes and Trichomonas hydrogenosomes evolved from the same ancestral heterodimeric alpha/betaMPP metallopeptidase as did the classic mitochondrial enzyme. The unique monomeric structure of the Giardia enzyme, and the co-evolving properties of the Giardia enzyme and substrate, provide a compelling example of the power of reductive evolution to shape parasite biology.

Zobrazit více v PubMed

Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440:623–630. PubMed

Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev Genet. 2004;5:123–135. PubMed

Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007;76:723–749. PubMed

Yaffe MP, Ohta S, Schatz G. A yeast mutant temperature-sensitive for mitochondrial assembly is deficient in a mitochondrial protease activity that cleaves imported precursor polypeptides. EMBO J. 1985;4:2069–2074. PubMed PMC

Mukhopadhyay A, Yang CS, Wei B, Weiner H. Precursor protein is readily degraded in mitochondrial matrix space if the leader is not processed by mitochondrial processing peptidase. J Biol Chem. 2007;282:37266–37275. PubMed

Gakh O, Cavadini P, Isaya G. Mitochondrial processing peptidases. Biochim Biophys Acta. 2002;1592:63–77. PubMed

Nagao Y, Kitada S, Kojima K, Toh H, Kuhara S, et al. Glycine-rich region of mitochondrial processing peptidase alpha-subunit is essential for binding and cleavage of the precursor proteins. J Biol Chem. 2000;275:34552–34556. PubMed

Arretz M, Schneider H, Guiard B, Brunner M, Neupert W. Characterization of the mitochondrial processing peptidase of Neurospora crassa. J Biol Chem. 1994;269:4959–4967. PubMed

Kitada S, Yamasaki E, Kojima K, Ito A. Determination of the cleavage site of the presequence by mitochondrial processing peptidase on the substrate binding scaffold and the multiple subsites inside a molecular cavity. J Biol Chem. 2003;278:1879–1885. PubMed

Taylor AB, Smith BS, Kitada S, Kojima K, Miyaura H, et al. Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure. 2001;9:615–625. PubMed

Bradley PJ, Lahti CJ, Plümper E, Johnson PJ. Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J. 1997;16:3484–3493. PubMed PMC

Tovar J, León-Avila G, Sánchez LB, Šuťák R, Tachezy J, et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426:172–176. PubMed

Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, et al. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science. 2007;317:1921–1926. PubMed

Doležal P, Šmíd O, Rada P, Zubáčová Z, Bursac D, et al. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A. 2005;102:10924–10929. PubMed PMC

Brown MT, Goldstone HM, Bastida-Corcuera F, Delgadillo-Correa MG, McArthur AG, et al. A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry. Mol Microbiol. 2007;64:1154–1163. PubMed

Kitada S, Uchiyama T, Funatsu T, Kitada Y, Ogishima T, et al. A protein from a parasitic microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J Bacteriol. 2007;189:844–850. PubMed PMC

Foster PG. Modeling compositional heterogeneity. Syst Biol. 2004;53:485–495. PubMed

Janata J, Holá K, Kubala M, Gakh O, Parkhomenko N, et al. Substrate evokes translocation of both domains in the mitochondrial processing peptidase alpha-subunit during which the C-terminus acts as a stabilizing element. Biochem Biophys Res Commun. 2004;316:211–217. PubMed

Kojima K, Kitada S, Ogishima T, Ito A. A proposed common structure of substrates bound to mitochondrial processing peptidase. J Biol Chem. 2001;276:2115–2121. PubMed

Dyall SD, Brown MT, Johnson PJ. Ancient invasions: from endosymbionts to organelles. Science. 2004;304:253–257. PubMed

Doležal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science. 2006;313:314–318. PubMed

Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315:207–212. PubMed PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. PubMed PMC

Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–577. PubMed

Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21:2104–2105. PubMed

Lewis PO, Holder MT, Holsinger KE. Polytomies and Bayesian phylogenetic inference. Syst Biol. 2005;54:241–253. PubMed

Beiko RG, Keith JM, Harlow TJ, Ragan MA. Searching for convergence in phylogenetic Markov chain Monte Carlo. Syst Biol. 2006;55:553–565. PubMed

Bollback JP. Bayesian model adequacy and choice in phylogenetics. Mol Biol Evol. 2002;19:1171–1180. PubMed

Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. PubMed

Do CB, Mahabhashyam MS, Brudno M, Batzoglou S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 2005;15:330–340. PubMed PMC

Laskowski RA, Moss DS, Thornton JM. Main-chain bond lengths and bond angles in protein structures. J Mol Biol. 1993;231:1049–1067. PubMed

Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G. Homology modeling, model and software evaluation: three related resources. Bioinformatics. 1998;14:523–528. PubMed

Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001;98:10037–10041. PubMed PMC

Laskowski RA, McArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–291.

Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, et al. Protein structure prediction servers at University College London. Nucl Acids Res. 2005;33:W36–38. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis

. 2024 Jun 03 ; 22 (1) : 130. [epub] 20240603

Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans

. 2023 Nov ; 9 (11) : .

Retortamonads from vertebrate hosts share features of anaerobic metabolism and pre-adaptations to parasitism with diplomonads

. 2021 Jun ; 82 () : 102308. [epub] 20210221

Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis

. 2019 Jan ; 17 (1) : e3000098. [epub] 20190104

A Single Tim Translocase in the Mitosomes of Giardia intestinalis Illustrates Convergence of Protein Import Machines in Anaerobic Eukaryotes

. 2018 Oct 01 ; 10 (10) : 2813-2822. [epub] 20181001

Trypanosomal mitochondrial intermediate peptidase does not behave as a classical mitochondrial processing peptidase

. 2018 ; 13 (4) : e0196474. [epub] 20180426

Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes

. 2017 Apr 01 ; 1 (4) : 0092.

N-Terminal Presequence-Independent Import of Phosphofructokinase into Hydrogenosomes of Trichomonas vaginalis

. 2015 Dec ; 14 (12) : 1264-75. [epub] 20151016

Conservation of Transit Peptide-Independent Protein Import into the Mitochondrial and Hydrogenosomal Matrix

. 2015 Sep 02 ; 7 (9) : 2716-26. [epub] 20150902

An Advanced System of the Mitochondrial Processing Peptidase and Core Protein Family in Trypanosoma brucei and Multiple Origins of the Core I Subunit in Eukaryotes

. 2013 ; 5 (5) : 860-75.

A computational study of the glycine-rich loop of mitochondrial processing peptidase

. 2013 ; 8 (9) : e74518. [epub] 20130913

Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes

. 2013 ; 8 (5) : e65148. [epub] 20130531

Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome

. 2012 ; 4 (10) : 1017-29. [epub] 20120912

The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis

. 2011 ; 6 (9) : e24428. [epub] 20110915

The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis

. 2011 Feb 24 ; 6 (2) : e17285. [epub] 20110224

The monothiol single-domain glutaredoxin is conserved in the highly reduced mitochondria of Giardia intestinalis

. 2009 Oct ; 8 (10) : 1584-91. [epub] 20090828

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...