Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites trichomonas vaginalis and giardia intestinalis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
Grantová podpora
BB/C006143/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
19096520
PubMed Central
PMC2597178
DOI
10.1371/journal.ppat.1000243
Knihovny.cz E-zdroje
- MeSH
- down regulace genetika MeSH
- fylogeneze MeSH
- genová dávka MeSH
- Giardia lamblia genetika metabolismus ultrastruktura MeSH
- glycin chemie genetika fyziologie MeSH
- metaloendopeptidasy chemie genetika metabolismus MeSH
- mitochondrie metabolismus MeSH
- molekulární evoluce * MeSH
- MPP peptidasa MeSH
- multimerizace proteinu MeSH
- organely metabolismus MeSH
- podjednotky proteinů genetika MeSH
- posttranslační úpravy proteinů genetika MeSH
- proteinové domény bohaté na prolin genetika fyziologie MeSH
- sekvence aminokyselin MeSH
- transport proteinů MeSH
- Trichomonas vaginalis genetika metabolismus ultrastruktura MeSH
- vodík metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- glycin MeSH
- metaloendopeptidasy MeSH
- podjednotky proteinů MeSH
- vodík MeSH
Mitochondrial processing peptidases are heterodimeric enzymes (alpha/betaMPP) that play an essential role in mitochondrial biogenesis by recognizing and cleaving the targeting presequences of nuclear-encoded mitochondrial proteins. The two subunits are paralogues that probably evolved by duplication of a gene for a monomeric metallopeptidase from the endosymbiotic ancestor of mitochondria. Here, we characterize the MPP-like proteins from two important human parasites that contain highly reduced versions of mitochondria, the mitosomes of Giardia intestinalis and the hydrogenosomes of Trichomonas vaginalis. Our biochemical characterization of recombinant proteins showed that, contrary to a recent report, the Trichomonas processing peptidase functions efficiently as an alpha/beta heterodimer. By contrast, and so far uniquely among eukaryotes, the Giardia processing peptidase functions as a monomer comprising a single betaMPP-like catalytic subunit. The structure and surface charge distribution of the Giardia processing peptidase predicted from a 3-D protein model appear to have co-evolved with the properties of Giardia mitosomal targeting sequences, which, unlike classic mitochondrial targeting signals, are typically short and impoverished in positively charged residues. The majority of hydrogenosomal presequences resemble those of mitosomes, but longer, positively charged mitochondrial-type presequences were also identified, consistent with the retention of the Trichomonas alphaMPP-like subunit. Our computational and experimental/functional analyses reveal that the divergent processing peptidases of Giardia mitosomes and Trichomonas hydrogenosomes evolved from the same ancestral heterodimeric alpha/betaMPP metallopeptidase as did the classic mitochondrial enzyme. The unique monomeric structure of the Giardia enzyme, and the co-evolving properties of the Giardia enzyme and substrate, provide a compelling example of the power of reductive evolution to shape parasite biology.
Zobrazit více v PubMed
Embley TM, Martin W. Eukaryotic evolution, changes and challenges. Nature. 2006;440:623–630. PubMed
Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev Genet. 2004;5:123–135. PubMed
Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem. 2007;76:723–749. PubMed
Yaffe MP, Ohta S, Schatz G. A yeast mutant temperature-sensitive for mitochondrial assembly is deficient in a mitochondrial protease activity that cleaves imported precursor polypeptides. EMBO J. 1985;4:2069–2074. PubMed PMC
Mukhopadhyay A, Yang CS, Wei B, Weiner H. Precursor protein is readily degraded in mitochondrial matrix space if the leader is not processed by mitochondrial processing peptidase. J Biol Chem. 2007;282:37266–37275. PubMed
Gakh O, Cavadini P, Isaya G. Mitochondrial processing peptidases. Biochim Biophys Acta. 2002;1592:63–77. PubMed
Nagao Y, Kitada S, Kojima K, Toh H, Kuhara S, et al. Glycine-rich region of mitochondrial processing peptidase alpha-subunit is essential for binding and cleavage of the precursor proteins. J Biol Chem. 2000;275:34552–34556. PubMed
Arretz M, Schneider H, Guiard B, Brunner M, Neupert W. Characterization of the mitochondrial processing peptidase of Neurospora crassa. J Biol Chem. 1994;269:4959–4967. PubMed
Kitada S, Yamasaki E, Kojima K, Ito A. Determination of the cleavage site of the presequence by mitochondrial processing peptidase on the substrate binding scaffold and the multiple subsites inside a molecular cavity. J Biol Chem. 2003;278:1879–1885. PubMed
Taylor AB, Smith BS, Kitada S, Kojima K, Miyaura H, et al. Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure. 2001;9:615–625. PubMed
Bradley PJ, Lahti CJ, Plümper E, Johnson PJ. Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J. 1997;16:3484–3493. PubMed PMC
Tovar J, León-Avila G, Sánchez LB, Šuťák R, Tachezy J, et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426:172–176. PubMed
Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, et al. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science. 2007;317:1921–1926. PubMed
Doležal P, Šmíd O, Rada P, Zubáčová Z, Bursac D, et al. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A. 2005;102:10924–10929. PubMed PMC
Brown MT, Goldstone HM, Bastida-Corcuera F, Delgadillo-Correa MG, McArthur AG, et al. A functionally divergent hydrogenosomal peptidase with protomitochondrial ancestry. Mol Microbiol. 2007;64:1154–1163. PubMed
Kitada S, Uchiyama T, Funatsu T, Kitada Y, Ogishima T, et al. A protein from a parasitic microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J Bacteriol. 2007;189:844–850. PubMed PMC
Foster PG. Modeling compositional heterogeneity. Syst Biol. 2004;53:485–495. PubMed
Janata J, Holá K, Kubala M, Gakh O, Parkhomenko N, et al. Substrate evokes translocation of both domains in the mitochondrial processing peptidase alpha-subunit during which the C-terminus acts as a stabilizing element. Biochem Biophys Res Commun. 2004;316:211–217. PubMed
Kojima K, Kitada S, Ogishima T, Ito A. A proposed common structure of substrates bound to mitochondrial processing peptidase. J Biol Chem. 2001;276:2115–2121. PubMed
Dyall SD, Brown MT, Johnson PJ. Ancient invasions: from endosymbionts to organelles. Science. 2004;304:253–257. PubMed
Doležal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science. 2006;313:314–318. PubMed
Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315:207–212. PubMed PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. PubMed PMC
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–577. PubMed
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21:2104–2105. PubMed
Lewis PO, Holder MT, Holsinger KE. Polytomies and Bayesian phylogenetic inference. Syst Biol. 2005;54:241–253. PubMed
Beiko RG, Keith JM, Harlow TJ, Ragan MA. Searching for convergence in phylogenetic Markov chain Monte Carlo. Syst Biol. 2006;55:553–565. PubMed
Bollback JP. Bayesian model adequacy and choice in phylogenetics. Mol Biol Evol. 2002;19:1171–1180. PubMed
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. PubMed
Do CB, Mahabhashyam MS, Brudno M, Batzoglou S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 2005;15:330–340. PubMed PMC
Laskowski RA, Moss DS, Thornton JM. Main-chain bond lengths and bond angles in protein structures. J Mol Biol. 1993;231:1049–1067. PubMed
Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G. Homology modeling, model and software evaluation: three related resources. Bioinformatics. 1998;14:523–528. PubMed
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001;98:10037–10041. PubMed PMC
Laskowski RA, McArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26:283–291.
Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, et al. Protein structure prediction servers at University College London. Nucl Acids Res. 2005;33:W36–38. PubMed PMC
A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis
Comparative analysis of mitochondrion-related organelles in anaerobic amoebozoans
Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis
Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes
A computational study of the glycine-rich loop of mitochondrial processing peptidase
Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes
The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis