A computational study of the glycine-rich loop of mitochondrial processing peptidase
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24058582
PubMed Central
PMC3772902
DOI
10.1371/journal.pone.0074518
PII: PONE-D-13-20582
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- glycin chemie MeSH
- katalytická doména MeSH
- metaloendopeptidasy chemie metabolismus MeSH
- MPP peptidasa MeSH
- podjednotky proteinů chemie metabolismus MeSH
- Saccharomyces cerevisiae enzymologie MeSH
- sekundární struktura proteinů MeSH
- simulace molekulární dynamiky MeSH
- substrátová specifita MeSH
- výpočetní biologie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glycin MeSH
- metaloendopeptidasy MeSH
- podjednotky proteinů MeSH
An all atomic, non-restrained molecular dynamics (MD) simulation in explicit water was used to study in detail the structural features of the highly conserved glycine-rich loop (GRL) of the α-subunit of the yeast mitochondrial processing peptidase (MPP) and its importance for the tertiary and quaternary conformation of MPP. Wild-type and GRL-deleted MPP structures were studied using non-restrained MD simulations, both in the presence and the absence of a substrate in the peptidase active site. Targeted MD simulations were employed to study the mechanism of substrate translocation from the GRL to the active site. We demonstrate that the natural conformational flexibility of the GRL is crucial for the substrate translocation process from outside the enzyme towards the MPP active site. We show that the α-helical conformation of the substrate is important not only during its initial interaction with MPP (i.e. substrate recognition), but also later, at least during the first third of the substrate translocation trajectory. Further, we show that the substrate remains in contact with the GRL during the whole first half of the translocation trajectory and that hydrophobic interactions play a major role. Finally, we conclude that the GRL acts as a precisely balanced structural element, holding the MPP subunits in a partially closed conformation regardless the presence or absence of a substrate in the active site.
Zobrazit více v PubMed
Ahting U, Thun C, Hegerl R, Typke D, Nargang FE et al. (1999) The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J Cell Biol 147: 959-968. doi:10.1083/jcb.147.5.959. PubMed: 10579717. PubMed DOI PMC
Dekker PJ, Martin F, Maarse AC, Bömer U, Müller H et al. (1997) The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70-Tim44. EMBO J 16: 5408-5419. doi:10.1093/emboj/16.17.5408. PubMed: 9312000. PubMed DOI PMC
Gakh O, Cavadini P, Isaya G (2002) Mitochondrial processing peptidases. Biochim Biophys Acta 1592: 63-77. doi:10.1016/S0167-4889(02)00265-3. PubMed: 12191769. PubMed DOI
Taylor AB, Smith BS, Kitada S, Kojima K, Miyaura H et al. (2001) Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure 9: 615-625. doi:10.1016/S0969-2126(01)00621-9. PubMed: 11470436. PubMed DOI
Taylor AB, Smith BS, Kitada S, Kojima K, Miyaura H et al. (2001) Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure 9: 615-625. doi:10.1016/S0969-2126(01)00621-9. PubMed: 11470436. PubMed DOI
Braun HP, Schmitz UK (1995) Are the 'core' proteins of the mitochondrial bc1 complex evolutionary relics of a processing protease? Trends Biochem Sci 20: 171-175. doi:10.1016/S0968-0004(00)88999-9. PubMed: 7610476. PubMed DOI
Kitada S, Shimokata K, Niidome T, Ogishima T, Ito A (1995) A putative metal-binding site in the beta subunit of rat mitochondrial processing peptidase is essential for its catalytic activity. J Biochem 117: 1148-1150. PubMed: 7490252. PubMed
Striebel HM, Rysavy P, Adamec J, Spizek J, Kalousek F (1996) Mutational analysis of both subunits from rat mitochondrial processing peptidase. Arch Biochem Biophys 335: 211-218. doi:10.1006/abbi.1996.0500. PubMed: 8914853. PubMed DOI
Janata J, Holá K, Kubala M, Gakh O, Parkhomenko N et al. (2004) Substrate evokes translocation of both domains in the mitochondrial processing peptidase alpha-subunit during which the C-terminus acts as a stabilizing element. Biochem Biophys Res Commun 316: 211-217. doi:10.1016/j.bbrc.2004.02.025. PubMed: 15003532. PubMed DOI
Geli V, Yang MJ, Suda K, Lustig A, Schatz G (1990) The MAS-encoded processing protease of yeast mitochondria. Overproduction and characterization of its two nonidentical subunits. J Biol Chem 265: 19216-19222. PubMed: 2229072. PubMed
Luciano P, Geoffroy S, Brandt A, Hernandez JF, Géli V (1997) Functional cooperation of the mitochondrial processing peptidase subunits. J Mol Biol 272: 213-225. doi:10.1006/jmbi.1997.1231. PubMed: 9299349. PubMed DOI
Gakh O, Obsil T, Adamec J, Spizek J, Amler E et al. (2001) Substrate binding changes conformation of the alpha-, but not the beta-subunit of mitochondrial processing peptidase. Arch Biochem Biophys 385: 392-396. doi:10.1006/abbi.2000.2167. PubMed: 11368022. PubMed DOI
von Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5: 1335-1342. PubMed: 3015599. PubMed PMC
Roise D, Horvath SJ, Tomich JM, Richards JH, Schatz G (1986) A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5: 1327-1334. PubMed: 3015598. PubMed PMC
Komuro Y, Miyashita N, Mori T, Muneyuki E, Saitoh T et al. (2013) Energetics of the Presequence-Binding Poses in Mitochondrial Protein Import Through Tom20. J Phys Chem B 117: 2864-2871. doi:10.1021/jp400113e. PubMed: 23432372. PubMed DOI
Nagao Y, Kitada S, Kojima K, Toh H, Kuhara S et al. (2000) Glycine-rich region of mitochondrial processing peptidase alpha-subunit is essential for binding and cleavage of the precursor proteins. J Biol Chem 275: 34552-34556. doi:10.1074/jbc.M003110200. PubMed: 10942759. PubMed DOI
Dvoráková-Holá K, Matusková A, Kubala M, Otyepka M, Kucera T et al. (2010) Glycine-rich loop of mitochondrial processing peptidase alpha-subunit is responsible for substrate recognition by a mechanism analogous to mitochondrial receptor Tom20. J Mol Biol 396: 1197-1210. doi:10.1016/j.jmb.2009.12.054. PubMed: 20053354. PubMed DOI
Nishino TG, Kitano K, Kojima K, Ogishima T, Ito A et al. (2007) Spatial orientation of mitochondrial processing peptidase and a preprotein revealed by fluorescence resonance energy transfer. J Biochem 141: 889-895. doi:10.1093/jb/mvm095. PubMed: 17426154. PubMed DOI
Amata O, Marino T, Russo N, Toscano M (2011) A proposal for mitochondrial processing peptidase catalytic mechanism. J Am Chem Soc 133: 17824-17831. doi:10.1021/ja207065v. PubMed: 21988451. PubMed DOI
Cerkasovová A, Cerkasov J, Kulda J, Reischig J (1976) Circular DNA and cardiolipin in hydrogenosomes, microbody-like organelles of trichomonads. Folia Parasitol (Praha) 23: 33-37. PubMed: 950181. PubMed
Smíd O, Matusková A, Harris SR, Kucera T, Novotný M et al. (2008) Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites trichomonas vaginalis and giardia intestinalis. PLOS Pathog 4: e1000243 PubMed: 19096520. PubMed PMC
Bolhuis A, Koetje E, Dubois JY, Vehmaanperä J, Venema G et al. (2000) Did the mitochondrial processing peptidase evolve from a eubacterial regulator of gene expression? Mol Biol Evol 17: 198-201. doi:10.1093/oxfordjournals.molbev.a026232. PubMed: 10666719. PubMed DOI
Kitada S, Uchiyama T, Funatsu T, Kitada Y, Ogishima T et al. (2007) A protein from a parasitic microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J Bacteriol 189: 844-850. doi:10.1128/JB.01261-06. PubMed: 17158683. PubMed DOI PMC
Aleshin AE, Gramatikova S, Hura GL, Bobkov A, Strongin AY et al. (2009) Crystal and solution structures of a prokaryotic M16B peptidase: an open and shut case. Structure 17: 1465-1475. doi:10.1016/j.str.2009.09.009. PubMed: 19913481. PubMed DOI PMC
Ohtsuka J, Ichihara Y, Ebihara A, Nagata K, Tanokura M (2009) Crystal structure of TTHA1264, a putative M16-family zinc peptidase from Thermus thermophilus HB8 that is homologous to the beta subunit of mitochondrial processing peptidase. Proteins 75: 774-780. doi:10.1002/prot.22365. PubMed: 19241474. PubMed DOI
Maruyama Y, Chuma A, Mikami B, Hashimoto W, Murata K (2011) Heterosubunit composition and crystal structures of a novel bacterial M16B metallopeptidase. J Mol Biol 407: 180-192. doi:10.1016/j.jmb.2011.01.038. PubMed: 21262231. PubMed DOI
Nagao Y, Kitada S, Kojima K, Toh H, Kuhara S et al. (2000) Glycine-rich region of mitochondrial processing peptidase alpha-subunit is essential for binding and cleavage of the precursor proteins. J Biol Chem 275: 34552-34556. doi:10.1074/jbc.M003110200. PubMed: 10942759. PubMed DOI
Kitada S, Uchiyama T, Funatsu T, Kitada Y, Ogishima T et al. (2007) A protein from a parasitic microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J Bacteriol 189: 844-850. doi:10.1128/JB.01261-06. PubMed: 17158683. PubMed DOI PMC
Case DA, Cheatham TE, Darden T, Gohlke H, Luo R et al. (2005) The Amber biomolecular simulation programs. J Comput Chem 26: 1668-1688. doi:10.1002/jcc.20290. PubMed: 16200636. PubMed DOI PMC
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A et al. (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Prot Str Fun Bios 65: 712-725. doi:10.1002/prot.21123. PubMed: 16981200. PubMed DOI PMC
Popov AV, Vorobjev YN, Zharkov DO (2013) MDTRA: A molecular dynamics trajectory analyzer with a graphical user interface. J Comput Chem, 34: 319-325. PubMed: 23047307. PubMed
Protein interfaces, surfaces and assemblies service PISA at European Bioinformatics Institute. Available: http://www.ebi.ac.uk/pdbe/prot_int/pistart.html. Accessed 2013 August 12.
Schrodinger LLC (2010) The PyMOL Molecular Graphics System, version 1.3.
Eisenberg D, Schwarz E, Komaromy M, Wall R (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179: 125-142. doi:10.1016/0022-2836(84)90309-7. PubMed: 6502707. PubMed DOI