Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
16040811
PubMed Central
PMC1182405
DOI
10.1073/pnas.0500349102
PII: 0500349102
Knihovny.cz E-zdroje
- MeSH
- aktivní transport MeSH
- ferredoxiny genetika metabolismus MeSH
- Giardia lamblia genetika metabolismus ultrastruktura MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- organely metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- proteiny obsahující železo a síru genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- Trichomonas vaginalis genetika metabolismus ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- srovnávací studie MeSH
- Názvy látek
- ferredoxiny MeSH
- proteiny obsahující železo a síru MeSH
- protozoální proteiny MeSH
- rekombinantní proteiny MeSH
Mitochondria are archetypal organelles of endosymbiotic origin in eukaryotic cells. Some unicellular eukaryotes (protists) were considered to be primarily amitochondrial organisms that diverged from the eukaryotic lineage before the acquisition of the premitochondrial endosymbiont, but their amitochondrial status was recently challenged by the discovery of mitochondria-like double membrane-bound organelles called mitosomes. Here, we report that proteins targeted into mitosomes of Giardia intestinalis have targeting signals necessary and sufficient to be recognized by the mitosomal protein import machinery. Expression of these mitosomal proteins in Trichomonas vaginalis results in targeting to hydrogenosomes, a hydrogen-producing form of mitochondria. We identify, in Giardia and Trichomonas, proteins related to the component of the translocase in the inner membrane from mitochondria and the processing peptidase. A shared mode of protein targeting supports the hypothesis that mitosomes, hydrogenosomes, and mitochondria represent different forms of the same fundamental organelle having evolved under distinct selection pressures.
Zobrazit více v PubMed
Tovar, J., Fischer, A. & Clark, C. G. (1999) Mol. Microbiol. 32, 1013-1021. PubMed
Mai, Z., Ghosh, S., Frisardi, M., Rosenthal, B., Rogers, R. & Samuelson, J. (1999) Mol. Cell. Biol. 19, 2198-2205. PubMed PMC
Williams, B. A., Hirt, R. P., Lucocq, J. M. & Embley, T. M. (2002) Nature 418, 865-869. PubMed
Tovar, J., Leon-Avila, G., Sánchez, L. B., Sutak, R., Tachezy, J., van der Giezen, M., Hernandez, M., Müller, M. & Lucocq, J. M. (2003) Nature 426, 172-176. PubMed
Adam, R. D. (2001) Clin. Microbiol. Rev. 14, 447-475. PubMed PMC
Best, A. A., Morrison, H. G., McArthur, A. G., Sogin, M. L. & Olsen, G. J. (2004) Genome Res. 14, 1537-1547. PubMed PMC
Cavalier-Smith, T. (1987) Cold Spring Harbor Symp. Quant. Biol. 52, 805-824. PubMed
Hashimoto, T., Sanchez, L. B., Shirakura, T., Müller, M. & Hasegawa, M. (1998) Proc. Natl. Acad. Sci. USA 95, 6860-6865. PubMed PMC
Roger, A. J., Svard, S. G., Tovar, J., Clark, C. G., Smith, M. W., Gillin, F. D. & Sogin, M. L. (1998) Proc. Natl. Acad. Sci. USA 95, 229-234. PubMed PMC
Tachezy, J., Sanchez, L. B. & Müller, M. (2001) Mol. Biol. Evol. 18, 1919-1928. PubMed
Lill, R. & Kispal, G. (2000) Trends Biochem. Sci. 25, 352-356. PubMed
Sutak, R., Dolezal, P., Fiumera, H. L., Hrdy, I., Dancis, A., Delgadillo-Correa, M., Johnson, P. J., Müller, M. & Tachezy, J. (2004) Proc. Natl. Acad. Sci. USA 101, 10368-10373. PubMed PMC
Pilon-Smits, E. A., Garifullina, G. F., Abdel-Ghany, S., Kato, S., Mihara, H., Hale, K. L., Burkhead, J. L., Esaki, N., Kurihara, T. & Pilon, M. (2002) Plant Physiol. 130, 1309-1318. PubMed PMC
Emelyanov, V. V. (2003) FEMS Microbiol. Lett. 226, 257-266. PubMed
Dyall, S. D., Brown, M. T. & Johnson, P. J. (2004) Science 304, 253-257. PubMed
van der Giezen, M., Slotboom, D. J., Horner, D. S., Dyal, P. L., Harding, M., Xue, G. P., Embley, T. M. & Kunji, E. R. (2002) EMBO J. 21, 572-579. PubMed PMC
Emelyanov, V. V. (2001) FEBS Lett. 501, 11-18. PubMed
Neupert, W. (1997) Annu. Rev. Biochem. 66, 863-917. PubMed
Rehling, P., Wiedemann, N., Pfanner, N. & Truscott, K. N. (2001) Crit. Rev. Biochem. Mol. Biol. 36, 291-336. PubMed
Truscott, K. N., Voos, W., Frazier, A. E., Lind, M., Li, Y., Geissler, A., Dudek, J., Muller, H., Sickmann, A., Meyer, H. E., et al. (2003) J. Cell Biol. 163, 707-713. PubMed PMC
Mokranjac, D., Sichting, M., Neupert, W. & Hell, K. (2003) EMBO J. 22, 4945-4956. PubMed PMC
Gakh, O., Cavadini, P. & Isaya, G. (2002) Biochim. Biophys. Acta 1592, 63-77. PubMed
Bradley, P. J., Lahti, C. J., Plümper, E. & Johnson, P. J. (1997) EMBO J. 16, 3484-3493. PubMed PMC
Nixon, J. E., Wang, A., Field, J., Morrison, H. G., McArthur, A. G., Sogin, M. L., Loftus, B. J. & Samuelson, J. (2002) Eukaryotic Cell 1, 181-190. PubMed PMC
Keister, D. B. (1983) Trans. R. Soc. Trop. Med. Hyg. 77, 487-488. PubMed
Diamond, L. S. (1957) J. Parasitol. 43, 488-490. PubMed
Sun, C. H., Chou, C. F. & Tai, J. H. (1998) Mol. Biochem. Parasitol. 92, 123-132. PubMed
Hrdy, I., Hirt, R. P., Dolezal, P., Bardonova, L., Foster, P. G., Tachezy, J. & Embley, T. M. (2004) Nature 432, 618-622. PubMed
Macasev, D., Whelan, J., Newbigin, E., Silva-Filho, M. C., Mulhern, T. D. & Lithgow, T. (2004) Mol. Biol. Evol. 21, 1557-1564. PubMed
Drmota, T., Proost, P., Van Ranst, M., Weyda, F., Kulda, J. & Tachezy, J. (1996) Mol. Biochem. Parasitol. 83, 221-234. PubMed
Murakami, H., Pain, D. & Blobel, G. (1988) J. Cell Biol. 107, 2051-2057. PubMed PMC
Tokuyasu, K. T. (1981) J. Electron Microsc. 30, 93-94.
Adamec, J., Gakh, O., Spizek, J. & Kalousek, F. (1999) Arch. Biochem. Biophys. 370, 77-85. PubMed
Mühlenhoff, U., Richhardt, N., Gerber, J. & Lill, R. (2002) J. Biol. Chem. 277, 29810-29816. PubMed
Mühlenhoff, U., Balk, J., Richhardt, N., Kaiser, J. T., Sipos, K., Kispal, G. & Lill, R. (2004) J. Biol. Chem. 279, 36906-36915. PubMed
Cserzo, M., Wallin, E., Simon, I., von Heijne, G. & Elofsson, A. (1997) Protein Eng. 10, 673-676. PubMed
Walsh, P., Bursac, D., Law, Y. C., Cyr, D. & Lithgow, T. (2004) EMBO Rep. 5, 567-571. PubMed PMC
Embley, T. M., van der Giezen, M., Horner, D. S., Dyal, P. L., Bell, S. & Foster, P. G. (2003) IUBMB Life 55, 387-395. PubMed
Likic, V. A., Perry, A., Hulett, J., Derby, M., Traven, A., Waller, R. F., Keeling, P. J., Koehler, C. M., Curran, S. P., Gooley, P. R., et al. (2005) J. Mol. Biol. 347, 81-93. PubMed
Herrmann, J. M. (2003) Trends Microbiol. 11, 74-79. PubMed
Martin, W. & Russell, M. J. (2003) Philos. Trans. R. Soc. Lond., B, Biol. Sci. 358, 59-83. PubMed PMC
A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis
Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis
Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis
The evolution of the Puf superfamily of proteins across the tree of eukaryotes
Fe-S cluster assembly in the supergroup Excavata
Probing the Biology of Giardia intestinalis Mitosomes Using In Vivo Enzymatic Tagging
Histone H3 Variants in Trichomonas vaginalis
Live imaging of mitosomes and hydrogenosomes by HaloTag technology
The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis
Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase