Mlf mediates proteotoxic response via formation of cellular foci for protein folding and degradation in Giardia
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39432513
PubMed Central
PMC11527388
DOI
10.1371/journal.ppat.1012617
PII: PPATHOGENS-D-24-01033
Knihovny.cz E-zdroje
- MeSH
- Giardia lamblia * metabolismus MeSH
- lidé MeSH
- proteolýza * MeSH
- protozoální proteiny * metabolismus genetika MeSH
- sbalování proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální proteiny * MeSH
Myeloid leukemia factor 1 (Mlf1) was identified as a proto-oncoprotein that affects hematopoietic differentiation in humans. However, its cellular function remains elusive, spanning roles from cell cycle regulation to modulation of protein aggregate formation and participation in ciliogenesis. Given that structurally conserved homologs of Mlf1 can be found across the eukaryotic tree of life, we decided to characterize its cellular role underlying this phenotypic pleiotropy. Using a model of the unicellular eukaryote Giardia intestinalis, we demonstrate that its Mlf1 homolog (GiMlf) mainly localizes to two types of cytosolic foci: microtubular structures, where it interacts with Hsp40, and ubiquitin-rich, membraneless compartments, found adjacent to mitochondrion-related organelles known as mitosomes, containing the 26S proteasome regulatory subunit 4. Upon cellular stress, GiMlf either relocates to the affected compartment or disperses across the cytoplasm, subsequently accumulating into enlarged foci during the recovery phase. In vitro assays suggest that GiMlf can be recruited to membranes through its affinity for signaling phospholipids. Importantly, cytosolic foci diminish in the gimlf knockout strain, which exhibits extensive proteomic changes indicative of compromised proteostasis. Consistent with data from other cellular systems, we propose that Mlf acts in the response to proteotoxic stress by mediating the formation of function-specific foci for protein folding and degradation.
Zobrazit více v PubMed
Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ, et al.. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene. 1996;12: 265–275. Available: https://europepmc.org/article/med/8570204?fromsearch=singleresult PubMed
Li, Yang Y, Wu K, Li Y, Shi M. Myeloid leukemia factor 1: A “double-edged sword” in health and disease. Front Oncol. 2023;13: 1124978. doi: 10.3389/fonc.2023.1124978 PubMed DOI PMC
Winteringham LN, Kobelke S, Williams JH, Ingley E, Klinken SP. Myeloid Leukemia Factor 1 inhibits erythropoietin-induced differentiation, cell cycle exit and p27Kip1 accumulation. Oncogene. 2004;23: 5105–5109. doi: 10.1038/sj.onc.1207661 PubMed DOI
Yoneda-Kato N, Tomoda K, Umehara M, Arata Y, Kato JY. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3. EMBO J. 2005;24: 1739–1749. doi: 10.1038/sj.emboj.7600656 PubMed DOI PMC
Wheway G, Schmidts M, Mans DA, Szymanska K, Nguyen TMT, Racher H, et al.. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat Cell Biol. 2015;17: 1074–1087. doi: 10.1038/NCB3201 PubMed DOI PMC
Sarparanta J, Jonson PH, Golzio C, Sandell S, Luque H, Screen M, et al.. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nature Genetics 2012 44:4. 2012;44: 450–455. doi: 10.1038/ng.1103 PubMed DOI PMC
Prophet SM, Rampello AJ, Niescier RF, Gentile JE, Mallik S, Koleske AJ, et al.. Atypical nuclear envelope condensates linked to neurological disorders reveal nucleoporin-directed chaperone activities. Nat Cell Biol. 2022;24: 1630–1641. doi: 10.1038/s41556-022-01001-y PubMed DOI PMC
Rampello AJ, Laudermilch E, Vishnoi N, Prophet SM, Shao L, Zhao C, et al.. Torsin ATPase deficiency leads to defects in nuclear pore biogenesis and sequestration of MLF2. J Cell Biol. 2020;219. doi: 10.1083/jcb.201910185 PubMed DOI PMC
Adam RD. Giardia duodenalis: biology and pathogenesis. Clin Microbiol Rev. 2021;34. doi: 10.1128/CMR.00024-19 PubMed DOI PMC
Faso C, Hehl AB. A cytonaut’s guide to protein trafficking in Giardia lamblia. Advances in Parasitology. Academic Press; 2019. pp. 105–127. doi: 10.1016/bs.apar.2019.08.001 PubMed DOI
Ankarklev J, Jerlström-Hultqvist J, Ringqvist E, Troell K, Svärd SG. Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol. 2010;8: 413–22. doi: 10.1038/nrmicro2317 PubMed DOI
Motyčková A, Voleman L, Najdrová V, Arbonová L, Benda M, Dohnálek V, et al.. Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis. PLoS Pathog. 2023;19. doi: 10.1371/JOURNAL.PPAT.1010773 PubMed DOI PMC
Gillin FD, Reiner DS, Gault MJ, Douglas H, Das S, Wunderlich A, et al.. Encystation and expression of cyst antigens by Giardia lamblia in vitro. Science (1979). 1987;235: 1040–1043. doi: 10.1126/SCIENCE.3547646 PubMed DOI
Einarsson E, Svärd SG. Encystation of Giardia intestinalis—a journey from the duodenum to the colon. Curr Trop Med Rep. 2015;2: 101–109. doi: 10.1007/S40475-015-0048-9/FIGURES/1 DOI
Thomas EB, Sutanto R, Johnson RS, Shih HW, Alas GCM, Krtková J, et al.. Staging encystation progression in Giardia lamblia using encystation-specific vesicle morphology and associating molecular markers. Front Cell Dev Biol. 2021;9: 662945. doi: 10.3389/FCELL.2021.662945/BIBTEX PubMed DOI PMC
Touz MC, Zamponi N. Sorting without a Golgi complex. Traffic. 2017;18: 637–645. doi: 10.1111/tra.12500 PubMed DOI
Stefanic S, Morf L, Kulangara C, Regös A, Sonda S, Schraner E, et al.. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci. 2009;122: 2846–56. doi: 10.1242/jcs.049411 PubMed DOI
Martincová E, Voleman L, Pyrih J, Žárský V, Vondráčková P, Kolísko M, et al.. Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol Cell Biol. 2015;35: 2864–74. doi: 10.1128/MCB.00448-15 PubMed DOI PMC
Rout S, Zumthor JP, Schraner EM, Faso C, Hehl AB. An interactome-centered protein discovery approach reveals novel components involved in mitosome function and homeostasis in Giardia lamblia. PLoS Pathog. 2016;12: e1006036. doi: 10.1371/journal.ppat.1006036 PubMed DOI PMC
Hagen KD, Hirakawa MP, House SA, Schwartz CL, Pham JK, Cipriano MJ, et al.. Novel structural components of the ventral disc and lateral crest in Giardia intestinalis. PLoS Negl Trop Dis. 2011;5: e1442. doi: 10.1371/JOURNAL.PNTD.0001442 PubMed DOI PMC
Wu JH, Tung SY, Ho CC, Su LH, Gan SW, Liao JY, et al.. A myeloid leukemia factor homolog involved in encystation-induced protein metabolism in Giardia lamblia. Biochimica et Biophysica Acta (BBA)—General Subjects. 2021;1865: 129859. doi: 10.1016/J.BBAGEN.2021.129859 PubMed DOI
Wu JH, Lee JC, Ho CC, Chiu PW, Sun CH. A myeloid leukemia factor homolog is involved in tolerance to stresses and stress-induced protein metabolism in Giardia lamblia. Biol Direct. 2023;18: 20. doi: 10.1186/S13062-023-00378-6 PubMed DOI PMC
Ansell BRE, Baker L, Emery SJ, McConville MJ, Svärd SG, Gasser RB, et al.. Transcriptomics indicates active and passive metronidazole resistance mechanisms in three seminal Giardia lines. Front Microbiol. 2017;8: 398. doi: 10.3389/FMICB.2017.00398 PubMed DOI PMC
Spycher C, Herman EK, Morf L, Qi W, Rehrauer H, Aquino Fournier C, et al.. An ER-directed transcriptional response to unfolded protein stress in the absence of conserved sensor-transducer proteins in Giardia lamblia. Mol Microbiol. 2013;88: 754–771. doi: 10.1111/MMI.12218 PubMed DOI
Su L-H, Lee GA, Huang Y-C, Chen Y-H, Sun C-H. Neomycin and puromycin affect gene expression in Giardia lamblia stable transfection. Mol Biochem Parasitol. 2007;156: 124–135. doi: 10.1016/j.molbiopara.2007.07.015 PubMed DOI
Schwartz CL, Heumann JM, Dawson SC, Hoenger A. A Detailed, Hierarchical Study of Giardia lamblia’s Ventral Disc Reveals Novel Microtubule-Associated Protein Complexes. PLoS One. 2012;7: e43783. doi: 10.1371/journal.pone.0043783 PubMed DOI PMC
Nosala C, Hagen KD, Hilton N, Chase TM, Jones K, Loudermilk R, et al.. Disc-associated proteins mediate the unusual hyperstability of the ventral disc in Giardia lamblia. J Cell Sci. 2020;133. doi: 10.1242/jcs.227355 PubMed DOI PMC
Brown JR, Schwartz CL, Heumann JM, Dawson SC, Hoenger A. A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol. 2016;194: 38–48. doi: 10.1016/j.jsb.2016.01.011 PubMed DOI PMC
Rada P, Šmíd O, Sutak R, Doležal P, Pyrih J, Žárský V, et al.. The monothiol single-domain glutaredoxin is conserved in the highly reduced mitochondria of Giardia intestinalis. Eukaryot Cell. 2009;8: 1584–1591. doi: 10.1128/EC.00181-09 PubMed DOI PMC
Jedelský P, Doležal P, Rada P, Pyrih J, Smíd O, Hrdý I, et al.. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One. 2011;6: e17285. doi: 10.1371/journal.pone.0017285 PubMed DOI PMC
Wampfler PB, Tosevski V, Nanni P, Spycher C, Hehl AB. Proteomics of secretory and endocytic organelles in Giardia lamblia. PLoS One. 2014;9: e94089. doi: 10.1371/journal.pone.0094089 PubMed DOI PMC
Soltys BJ, Falah M, Gupta RS. Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to BiP. J Cell Sci. 1996;109: 1909–1917. doi: 10.1242/jcs.109.7.1909 PubMed DOI
Kim J, Shin MY, Park SJ. Functional identification of a nuclear localization signal of MYB2 protein in Giardia lamblia. Korean J Parasitol. 2020;58: 675. doi: 10.3347/kjp.2020.58.6.675 PubMed DOI PMC
McInally SG, Dawson SC. Eight unique basal bodies in the multi-flagellated diplomonad Giardia lamblia. Cilia. 2016;5. doi: 10.1186/S13630-016-0042-4 PubMed DOI PMC
Hennessey KM, Smith TR, Xu JW, Alas GCM, Ojo KK, Merritt EA, et al.. Identification and validation of small-gatekeeper kinases as drug targets in Giardia lamblia. PLoS Negl Trop Dis. 2016;10: e0005107. doi: 10.1371/JOURNAL.PNTD.0005107 PubMed DOI PMC
Stefanic S, Palm D, Svärd SG, Hehl AB. Organelle Proteomics Reveals Cargo Maturation Mechanisms Associated with Golgi-like Encystation Vesicles in the Early-diverged Protozoan Giardia lamblia. Journal of Biological Chemistry. 2006;281: 7595–7604. doi: 10.1074/jbc.M510940200 PubMed DOI
Kimura A, Kurata Y, Nakabayashi J, Kagawa H, Hirano H. N-Myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment-specific protein quality control system. J Proteomics. 2016;130: 33–41. doi: 10.1016/j.jprot.2015.08.021 PubMed DOI
Alvarado ME, Chaparro-Gutiérrez JJ, Calvo EP, Prada LF, Wasserman M. Activity of the Giardia intestinalis proteasome during encystation and its connection with the expression of the cyst wall protein 1 (CWP1). Acta Trop. 2022;225: 106183. doi: 10.1016/j.actatropica.2021.106183 PubMed DOI
Konrad C, Spycher C, Hehl AB. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. Beverley SM, editor. PLoS Pathog. 2010;6: e1000835. doi: 10.1371/journal.ppat.1000835 PubMed DOI PMC
Lindley TA, Chakraborty PR, Edlind TD. Heat shock and stress response in Giardia lamblia. Mol Biochem Parasitol. 1988;28: 135–143. doi: 10.1016/0166-6851(88)90061-8 PubMed DOI
Pickart CM. Ubiquitin in chains. Trends Biochem Sci. 2000;25: 544–548. doi: 10.1016/s0968-0004(00)01681-9 PubMed DOI
Gu J, Liu Z, Zhang S, Li Y, Xia W, Wang C, et al.. Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles. Proc Natl Acad Sci U S A. 2020;117: 31123–31133. doi: 10.1073/pnas.2002437117 PubMed DOI PMC
Horáčková V, Voleman L, Hagen KD, Petrů M, Vinopalová M, Weisz F, et al.. Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis. Open Biol. 2022;12. doi: 10.1098/RSOB.210361 PubMed DOI PMC
Lin Z-Q, Gan S-W, Tung S-Y, Ho C-C, Su L-H, Sun C-H. Development of CRISPR/Cas9-mediated gene disruption systems in Giardia lamblia. PLoS One. 2019;14: e0213594. doi: 10.1371/journal.pone.0213594 PubMed DOI PMC
Prucca CG, Lujan HD. Antigenic variation in Giardia lamblia. Cell Microbiol. 2009;11: 1706–15. doi: 10.1111/j.1462-5822.2009.01367.x PubMed DOI
Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, et al.. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature. 2003;426: 172–176. doi: 10.1038/nature01945 PubMed DOI
Enenkel C, Kang RW, Wilfling F, Ernst OP. Intracellular localization of the proteasome in response to stress conditions. Journal of Biological Chemistry. 2022;298: 102083. doi: 10.1016/j.jbc.2022.102083 PubMed DOI PMC
Hirose T, Ninomiya K, Nakagawa S, Yamazaki T. A guide to membraneless organelles and their various roles in gene regulation. Nature Reviews Molecular Cell Biology 2022 24:4. 2022;24: 288–304. doi: 10.1038/s41580-022-00558-8 PubMed DOI
Ibrahim AY, Khaodeuanepheng NP, Amarasekara DL, Correia JJ, Lewis KA, Fitzkee NC, et al.. Intrinsically disordered regions that drive phase separation form a robustly distinct protein class. Journal of Biological Chemistry. 2023;299: 102801. doi: 10.1016/j.jbc.2022.102801 PubMed DOI PMC
Li Z-F, Wu X, Jiang Y, Liu J, Wu C, Inagaki M, et al.. Non-pathogenic protein aggregates in skeletal muscle in MLF1 transgenic mice. Journal of Neurological Sciences. 2007. [cited 20 Feb 2024]. doi: 10.1016/j.jns.2007.07.027 PubMed DOI
Banerjee M, Datta M, Bhattacharyya NP. Modulation of mutant Huntingtin aggregates and toxicity by human myeloid leukemia factors. Int J Biochem Cell Biol. 2017;82: 1–9. doi: 10.1016/j.biocel.2016.11.008 PubMed DOI
Hoh RA, Stowe TR, Turk E, Stearns T. Transcriptional program of ciliated epithelial cells eeveals new cilium and centrosome components and links to human disease. PLoS One. 2012;7: e52166. doi: 10.1371/JOURNAL.PONE.0052166 PubMed DOI PMC
Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM, Moseley A, et al.. A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics. 2002;1: 451–465. doi: 10.1074/mcp.m200037-mcp200 PubMed DOI
Macechko TP, Steimle PA, Lindmark DG, Erlandsen SL, Jarroll EL. Galactosamine-synthesizing enzymes are induced when Giardia encyst. Mol Biochem Parasitol. 1992;56: 301–309. doi: 10.1016/0166-6851(92)90179-N PubMed DOI
Niño CA, Chaparro J, Soffientini P, Polo S, Wasserman M. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis. Microbiologyopen. 2013;2: 525. doi: 10.1002/MBO3.88 PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30: 772–780. doi: 10.1093/molbev/mst010 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25: 1972–1973. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al.. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37: 1530–1534. doi: 10.1093/molbev/msaa015 PubMed DOI PMC
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42: W320–W324. doi: 10.1093/nar/gku316 PubMed DOI PMC
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al.. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596:7873. 2021;596: 583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC
Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg. 1983;77: 487–488. doi: 10.1016/0035-9203(83)90120-7 PubMed DOI
Dolezal P, Smíd O, Rada P, Zubácová Z, Bursać D, Suták R, et al.. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A. 2005;102: 10924–9. doi: 10.1073/pnas.0500349102 PubMed DOI PMC
Lauwaet T, Davids BJ, Torres-Escobar A, Birkeland SR, Cipriano MJ, Preheim SP, et al.. Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol Biochem Parasitol. 2007;152: 80–9. doi: 10.1016/j.molbiopara.2006.12.001 PubMed DOI PMC
Fry MY, Najdrová V, Maggiolo AO, Saladi SM, Doležal P, Clemons WM. Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3. Nat Struct Mol Biol. 2022;29. doi: 10.1038/s41594-022-00798-4 PubMed DOI
Einarsson E, Troell K, Hoeppner MP, Grabherr M, Ribacke U, Svärd SG. Coordinated changes in gene expression throughout encystation of Giardia intestinalis. PLoS Negl Trop Dis. 2016;10: e0004571. doi: 10.1371/journal.pntd.0004571 PubMed DOI PMC
Elso CM, Roberts LJ, Smyth GK, Thomson RJ, Baldwin TM, Foote SJ, et al.. Leishmaniasis host response loci (lmr1-3) modify disease severity through a Th1/Th2-independent pathway. Genes Immun. 2004;5: 93–100. doi: 10.1038/sj.gene.6364042 PubMed DOI
Gaechter V, Schraner E, Wild P, Hehl AB. The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic. 2008;9: 57–71. doi: 10.1111/j.1600-0854.2007.00657.x PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9: 676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC
Najdrová V, Stairs CW, Vinopalová M, Voleman L, Doležal P. The evolution of the Puf superfamily of proteins across the tree of eukaryotes. BMC Biol. 2020;18: 77. doi: 10.1186/s12915-020-00814-3 PubMed DOI PMC
Gorilak P, Pružincová M, Vachova H, Olšinová M, Schmidt Cernohorska M, Varga V. Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites. Open Biol. 2021;11. doi: 10.1098/rsob.210131 PubMed DOI PMC
Dagley MJ, Dolezal P, Likić VA, Smid O, Purcell AW, Buchanan SK, et al.. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol. 2009;26: 1941–1947. doi: 10.1093/molbev/msp117 PubMed DOI PMC
Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol. 2005;152: 36–51. doi: 10.1016/j.jsb.2005.07.007 PubMed DOI
Mastronarde DN. Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol. 1997;120: 343–352. doi: 10.1006/jsbi.1997.3919 PubMed DOI
Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Scientific Reports 2020 10:1. 2020;10: 1–5. doi: 10.1038/s41598-020-76603-3 PubMed DOI PMC
Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022;50: W228–W234. doi: 10.1093/nar/gkac278 PubMed DOI PMC
Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M, Söding J, et al.. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics. 2020;72: e108. doi: 10.1002/cpbi.108 PubMed DOI
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13: 731–740. doi: 10.1038/nmeth.3901 PubMed DOI
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, et al.. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50: D543–D552. doi: 10.1093/nar/gkab1038 PubMed DOI PMC