• This record comes from PubMed

Biomolecular Profiling by MALDI-TOF Mass Spectrometry in Food and Beverage Analyses

. 2022 Nov 07 ; 23 (21) : . [epub] 20221107

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund (ERDF)

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has frequently been applied to the analysis of biomolecules. Its strength resides not only in compound identification but particularly in acquiring molecular profiles providing a high discriminating power. The main advantages include its speed, simplicity, versatility, minimum sample preparation needs, and a relatively high tolerance to salts. Other benefits are represented by the possibility of automation, high throughput, sensitivity, accuracy, and good reproducibility, allowing quantitative studies. This review deals with the prominent use of MALDI-TOF MS profiling in food and beverage analysis ranging from the simple detection of sample constituents to quantifications of marker compounds, quality control, and assessment of product authenticity. This review summarizes relevant discoveries that have been obtained with milk and milk products, edible oils, wine, beer, flour, meat, honey, and other alimentary products. Marker molecules are specified: proteins and peptides for milk, cheeses, flour, meat, wine and beer; triacylglycerols and phospholipids for oils; and low-molecular-weight metabolites for wine, beer and chocolate. Special attention is paid to sample preparation techniques and the combination of spectral profiling and statistical evaluation methods, which is powerful for the differentiation of samples and the sensitive detection of frauds and adulterations.

See more in PubMed

Hillenkamp F., Karas M. The MALDI process and method. In: Hillenkamp F., Peter-Katalinić J., editors. MALDI-MS. A Practical Guide to Instrumentation, Methods and Applications. 1st ed. Wiley-VCH; Weinheim, Germany: 2007. pp. 1–28. DOI

Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988;60:2299–2301. doi: 10.1021/ac00171a028. PubMed DOI

Tanaka K., Waki H., Ido Y., Akita S., Yoshida Y., Yoshida T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988;2:151–153. doi: 10.1002/rcm.1290020802. DOI

O’Connor P.B., Hillenkamp F. MALDI mass spectrometry instrumentation. In: Hillenkamp F., Peter-Katalinić J., editors. MALDI-MS. A Practical Guide to Instrumentation, Methods and Applications. 1st ed. Wiley-VCH; Weinheim, Germany: 2007. pp. 29–82. DOI

Mann M., Højrup P., Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol. Mass Spectrom. 1993;22:338–345. doi: 10.1002/bms.1200220605. PubMed DOI

Pappin D.J.C., Hojrup P., Bleasby A.J. Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 1993;3:327–332. doi: 10.1016/0960-9822(93)90195-T. PubMed DOI

Medzihradszky K.F., Campbell J.M., Baldwin M.A., Falick A.M., Juhasz P., Vestal M.L., Burlingame A.L. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 2000;72:552–558. doi: 10.1021/ac990809y. PubMed DOI

Suckau D., Resemann A., Schuerenberg M., Hufnagel P., Franzen J., Holle A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 2003;376:952–965. doi: 10.1007/s00216-003-2057-0. PubMed DOI

Pittenauer E., Allmaier G. The renaissance of high-energy CID for structural elucidation of complex lipids: MALDI-TOF/RTOF-MS of alkali cationized triacylglycerols. J. Am. Soc. Mass Spectrom. 2009;20:1037–1047. doi: 10.1016/j.jasms.2009.01.009. PubMed DOI

Singhal N., Kumar M., Kanaujia P.K., Virdi J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015;6:791. doi: 10.3389/fmicb.2015.00791. PubMed DOI PMC

Jergović A.M., Peršurić Ž., Saftić L., Kraljević Pavelić S. Evaluation of MALDI-TOF/MS technology in olive oil adulteration. J. Am. Oil Chem. Soc. 2017;94:749–757. doi: 10.1007/s11746-017-2994-y. DOI

Cozzolino R., Passalacqua S., Salemi S., Malvagna P., Spina E., Garozzo D. Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 2001;36:1031–1037. doi: 10.1002/jms.206. PubMed DOI

Calvano C.D., De Ceglie C., D’Accolti L., Zambonin C.G. MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent. Food Chem. 2012;134:1192–1198. doi: 10.1016/j.foodchem.2012.02.154. PubMed DOI

Asbury G.R., Al-Saad K., Siems F., Hannan R.M., Hill H.H., Jr. Analysis of triacylglycerols and whole oils by matrix-assisted laser desorption/ionization time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 1999;10:983–991. doi: 10.1016/S1044-0305(99)00063-X. DOI

Sentandreu M.S., Sentandreu E. Peptide biomarkers as a way to determine meat authenticity. Meat Sci. 2011;89:280–285. doi: 10.1016/j.meatsci.2011.04.028. PubMed DOI

López-Fernández H., Santos H.M., Capelo J.L., Fdez-Riverola F., Glez-Peña D., Reboiro-Jato M. Mass-Up: An all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery. BMC Bioinform. 2015;16:318. doi: 10.1186/s12859-015-0752-4. PubMed DOI PMC

Sorochan Armstrong M.D., de la Mata A.P., Harynuk J.J. Review of variable selection methods for discriminant-type problems in chemometrics. Front. Anal. Sci. 2022;2:867938. doi: 10.3389/frans.2022.867938. DOI

Zambonin C. MALDI-TOF mass spectrometry applications for food fraud detection. Appl. Sci. 2021;11:3374. doi: 10.3390/app11083374. DOI

Jenness R. Composition of Milk. In: Wong N.P., Jenness R., Keeney M., Marth E.H., editors. Fundamentals of Dairy Chemistry. 3rd ed. Van Nostrand Reinhold Company; New York, NY, USA: 1988. pp. 1–38. DOI

Cunsolo V., Saletti R., Muccilli V., Foti S. Characterization of the protein profile of donkey’s milk whey fraction. J. Mass Spectrom. 2007;42:1162–1174. doi: 10.1002/jms.1247. PubMed DOI

Datta N., Elliott A.J., Perkins M.L., Deeth H.C. Ultra-high temperature (UHT) treatment of milk: Comparison of direct and indirect modes of heating. Aust. J. Dairy Technol. 2002;57:211–227.

Guy P.A., Fernalle F. Contribution of mass spectrometry to assess quality of milk-based products. Mass Spectrom. Rev. 2006;25:290–326. doi: 10.1002/mas.20074. PubMed DOI

Andrews G.R. Distinguishing pasteurized, UHT and sterilized milks by their lactulose content. Int. J. Dairy Technol. 1984;37:92–95. doi: 10.1111/j.1471-0307.1984.tb00498.x. DOI

Marsilio R., Catinella S., Seraglia R., Traldi P. Matrix-assisted laser desorption/ionization mass spectrometry for the rapid evaluation of thermal damage in milk. Rapid Commun. Mass Spectrom. 1995;9:550–552. doi: 10.1002/rcm.1290090615. DOI

Catinella S., Traldi P., Pinelli C., Dallaturca E., Marsilio R. Matrix-assisted laser desorption/ionization mass spectrometry in milk science. Rapid Commun. Mass Spectrom. 1996;10:1629–1637. doi: 10.1002/(SICI)1097-0231(199610)10:13<1629::AID-RCM655>3.0.CO;2-B. PubMed DOI

Catinella S., Traldi P., Pinelli C., Dallaturca E. Matrix-assisted laser desorption/ionization mass spectrometry: A valid analytical tool in the dairy industry. Rapid Commun. Mass Spectrom. 1996;10:1123–1127. doi: 10.1002/(SICI)1097-0231(19960715)10:9<1123::AID-RCM587>3.0.CO;2-W. PubMed DOI

Fanton C., Delogu G., Maccioni E., Podda G., Seraglia R., Traldi P. Matrix-assisted laser desorption/ionization mass spectrometry in the dairy industry 2. The protein fingerprint of ewe cheese and its application to detection of adulteration by bovine milk. Rapid Commun. Mass Spectrom. 1998;12:1569–1573. doi: 10.1002/(SICI)1097-0231(19981030)12:20<1569::AID-RCM341>3.0.CO;2-F. PubMed DOI

Meltretter J., Schmidt A., Humeny A., Becker C.M., Pischetsrieder M. Analysis of the peptide profile of milk and its changes during thermal treatment and storage. J. Agric. Food Chem. 2008;56:2899–2906. doi: 10.1021/jf073479o. PubMed DOI

Azad T., Ahmed S. Common milk adulteration and their detection techniques. Int. J. Food Contam. 2016;3:22. doi: 10.1186/s40550-016-0045-3. DOI

Calvano C.D., De Ceglie C., Monopoli A., Zambonin C.G. Detection of sheep and goat milk adulterations by direct MALDI-TOF MS analysis of milk tryptic digests. J. Mass Spectrom. 2012;47:1141–1149. doi: 10.1002/jms.2995. PubMed DOI

Di Girolamo F., Masotti A., Salvatori G., Scapaticci M., Muraca M., Putignani L. A sensitive and effective proteomic approach to identify she-donkey’s and goat’s milk adulterations by MALDI-TOF MS fingerprinting. Int. J. Mol. Sci. 2014;15:13697–13719. doi: 10.3390/ijms150813697. PubMed DOI PMC

Angeletti R., Gioacchini A.M., Seraglia R., Piro R., Traldi P. The potential of matrix-assisted laser desorption/ionization mass spectrometry in the quality control of water buffalo mozzarella cheese. J. Mass Spectrom. 1998;33:525–531. doi: 10.1002/(SICI)1096-9888(199806)33:6<525::AID-JMS655>3.0.CO;2-S. PubMed DOI

Di Luccia A., Picariello G., Trani A., Alviti G., Loizzo P., Faccia M., Addeo F. Occurrence of β-casein fragments in cold-stored and curdled river buffalo (Bubalus bubalis L.) milk. J. Dairy Sci. 2009;92:1319–1329. doi: 10.3168/jds.2008-1220. PubMed DOI

Cozzolino R., Passalacqua S., Salemi S., Garozzo D. Identification of adulteration in water buffalo mozzarella and in ewe cheese by using whey proteins as biomarkers and matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 2002;37:985–991. doi: 10.1002/jms.358. PubMed DOI

Cunsolo V., Muccilli V., Saletti R., Foti S. MALDI-TOF mass spectrometry for the monitoring of she-donkey’s milk contamination or adulteration. J. Mass Spectrom. 2013;48:148–153. doi: 10.1002/jms.3138. PubMed DOI

Cuollo M., Caira S., Fierro O., Pinto G., Picariello G., Addeo F. Toward milk speciation through the monitoring of casein proteotypic peptides. Rapid Commun. Mass Spectrom. 2010;24:1687–1696. doi: 10.1002/rcm.4564. PubMed DOI

Caira S., Pinto G., Nicolai M.A., Chianese L., Addeo F. Simultaneously tracing the geographical origin and presence of bovine milk in Italian water buffalo Mozzarella cheese using MALDI-TOF data of casein signature peptides. Anal. Bioanal. Chem. 2016;408:5609–5621. doi: 10.1007/s00216-016-9663-0. PubMed DOI

Sassi M., Arena S., Scaloni A. MALDI-TOF-MS Platform for integrated proteomic and peptidomic profiling of milk samples allows rapid detection of food adulterations. J. Agric. Food Chem. 2015;63:6157–6171. doi: 10.1021/acs.jafc.5b02384. PubMed DOI

Galli B.D., Baptista D.P., Cavalheiro F.G., Negrão F., Eberlin M.N., Gigante M.L. Peptide profile of Camembert-type cheese: Effect of heat treatment and adjunct culture Lactobacillus rhamnosus GG. Food Res. Int. 2019;123:393–402. doi: 10.1016/j.foodres.2019.05.009. PubMed DOI

Kritikou A.S., Aalizadeh R., Damalas D.E., Barla I.V., Baessmann C., Thomaidis N.S. MALDI-TOF MS integrated workflow for food authenticity investigations: An untargeted protein-based approach for rapid detection of PDO feta cheese adulteration. Food Chem. 2022;370:131057. doi: 10.1016/j.foodchem.2021.131057. PubMed DOI

Soeryapranata E., Powers J.R., Fajarrini F., Weller K.M., Hill H.H., Jr., Siems W.F., III Relationship between MALDI-TOF analysis of β-CN f193-209 concentration and sensory evaluation of bitterness intensity of aged cheddar cheese. J. Agric. Food Chem. 2002;50:4900–4905. doi: 10.1021/jf011668f. PubMed DOI

Savastano M.L., Liu Y., Mels J., Dittrich D., Haus S., Gensberger-Reigl S., Pischetsrieder M. Profiling of multiphosphorylated peptides in kefir and their release during simulated gastrointestinal digestion. ACS Omega. 2019;4:7963–7970. doi: 10.1021/acsomega.8b03105. PubMed DOI PMC

Dalabasmaz S., Dittrich D., Kellner I., Drewello T., Pischetsrieder M. Identification of peptides reflecting the storage of UHT milk by MALDI-TOF MS peptide profiling. J. Proteomics. 2019;207:103444. doi: 10.1016/j.jprot.2019.103444. PubMed DOI

Dalabasmaz S., Pischetsrieder M. Design of a prediction model for the differentiation of pasteurized milk from heated ESL milk by peptide profiling. Proteomics. 2019;19:1800292. doi: 10.1002/pmic.201800292. PubMed DOI

Magro M., Zaccarin M., Miotto G., Da Dalt L., Baratella D., Fariselli P., Gabai G., Vianello F. Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: Identification and amplification of a hidden mastitis biomarker in milk proteome. Anal. Bioanal. Chem. 2018;410:2949–2959. doi: 10.1007/s00216-018-0976-z. PubMed DOI

Garcia J.S., Sanvido G.B., Saraiva S.A., Zacca J.J., Cosso R.G., Eberlin M.N. Bovine milk powder adulteration with vegetable oils or fats revealed by MALDI-QTOF MS. Food Chem. 2012;131:722–726. doi: 10.1016/j.foodchem.2011.09.062. DOI

England P., Tang W., Kostrzewa M., Shahrezaei V., Larrouy-Maumus G. Discrimination of bovine milk from non-dairy milk by lipids fingerprinting using routine matrix-assisted laser desorption ionization mass spectrometry. Sci. Rep. 2020;10:5160. doi: 10.1038/s41598-020-62113-9. PubMed DOI PMC

Nicolaou N., Xu Y., Goodacre R. MALDI-MS and multivariate analysis for the detection and quantification of different milk species. Anal. Bioanal. Chem. 2011;399:3491–3502. doi: 10.1007/s00216-011-4728-6. PubMed DOI

Rysova L., Cejnar P., Hanus O., Legarova V., Havlik J., Nejeschlebova H., Nemeckova I., Jedelska R., Bozik M. Use of MALDI-TOF MS technology to evaluate adulteration of small ruminant milk with raw bovine milk. J Dairy Sci. 2022;105:4882–4894. doi: 10.3168/jds.2021-21396. PubMed DOI

Buchgraber M., Ulberth F., Emons H., Anklam E. Triacyglycerol profiling by using chromatographic techniques. Eur. J. Lipid Sci. Technol. 2004;106:621–648. doi: 10.1002/ejlt.200400986. DOI

Jakab A., Nagy K., Héberger K., Vékey K., Forgács E. Differentiation of vegetable oils by mass spectrometry combined with statistical analysis. Rapid Commun. Mass Spectrom. 2002;16:2291–2297. doi: 10.1002/rcm.862. PubMed DOI

Kubo A., Satoh T., Itoh Y., Hashimoto M., Tamura J., Cody R.B. Structural analysis of triacylglycerols by using a MALDI-TOF/TOF system with monoisotopic precursor selection. J. Am. Soc. Mass Spectrom. 2013;24:684–689. doi: 10.1007/s13361-012-0513-9. PubMed DOI PMC

Calvano C.D., Palmisano F., Zambonin C.G. Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols in oils. Rapid Commun. Mass Spectrom. 2005;19:1315–1320. doi: 10.1002/rcm.1933. PubMed DOI

Ayorinde F.O., Elhilo E., Hlongwane C. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of canola, castor and olive oils. Rapid Commun. Mass Spectrom. 1999;13:737–739. doi: 10.1002/(SICI)1097-0231(19990430)13:8<737::AID-RCM552>3.0.CO;2-L. PubMed DOI

Ayorinde F.O., Eribo B.E., Balan K.V., Johnson J.H., Jr., Wan L.W. Determination of major triacylglycerol components of polyunsaturated specialty oils using matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1999;13:937–942. doi: 10.1002/(SICI)1097-0231(19990530)13:10<937::AID-RCM590>3.0.CO;2-T. DOI

Ayorinde F.O., Keith Q.L., Jr., Wan L.W. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of cod liver oil and the effect of analyte/matrix concentration on signal intensities. Rapid Commun. Mass Spectrom. 1999;13:1762–1769. doi: 10.1002/(SICI)1097-0231(19990915)13:17<1762::AID-RCM711>3.0.CO;2-8. PubMed DOI

Ayorinde F.O., Garvin K., Saeed K. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2000;14:608–615. doi: 10.1002/(SICI)1097-0231(20000415)14:7<608::AID-RCM918>3.0.CO;2-4. PubMed DOI

Picariello G., Romano R., Addeo F. Nitrocellulose film substrate minimizes fragmentation in matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of triacylglycerols. Anal. Chem. 2010;82:5783–5791. doi: 10.1021/ac100848w. PubMed DOI

Lay J.O., Jr., Liyanage R., Durham B., Brooks J. Rapid characterization of edible oils by direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis using triacylglycerols. Rapid Commun. Mass Spectrom. 2006;20:952–958. doi: 10.1002/rcm.2394. PubMed DOI

Di Girolamo F., Masotti A., Lante I., Scapaticci M., Calvano C.D., Zambonin C., Muraca M., Putignani L. A simple and effective mass spectrometric approach to identify the adulteration of the mediterranean diet component extra-virgin olive oil with corn oil. Int. J. Mol. Sci. 2015;16:20896–20912. doi: 10.3390/ijms160920896. PubMed DOI PMC

Ng T.T., So P.K., Zheng B., Yao Z.P. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chim. Acta. 2015;884:70–76. doi: 10.1016/j.aca.2015.05.013. PubMed DOI

Li S., Ng T.T., Yao Z.P. Quantitative analysis of blended oils by matrix-assisted laser desorption/ ionization mass spectrometry and partial least squares regression. Food Chem. 2021;334:127601. doi: 10.1016/j.foodchem.2020.127601. PubMed DOI

Kuo T.H., Kuei M.S., Hsiao Y., Chung H.H., Hsu C.C., Chen H.J. Matrix-assisted laser desorption/ionization mass spectrometry typings of edible oils through spectral networking of triacylglycerol fingerprints. ACS Omega. 2019;4:15734–15741. doi: 10.1021/acsomega.9b02433. PubMed DOI PMC

De Marchi F., Seraglia R., Molin L., Traldi P., De Rosso M., Panighel A., Dalla Vedova A., Gardiman M., Giust M., Flamini R. Seed oil triglyceride profiling of thirty-two hybrid grape varieties. J. Mass Spectrom. 2012;47:1113–1119. doi: 10.1002/jms.3010. PubMed DOI

Kaufman M., Wiesman Z. Pomegranate oil analysis with emphasis on MALDI-TOF/MS triacylglycerol fingerprinting. J. Agric. Food Chem. 2007;55:10405–10413. doi: 10.1021/jf072741q. PubMed DOI

Chapagain B.P., Wiesman Z. MALDI-TOF/MS fingerprinting of triacylglycerols (TAGs) in olive oils produced in the Israeli Negev desert. J. Agric. Food Chem. 2009;57:1135–1142. doi: 10.1021/jf8025277. PubMed DOI

Vichi S., Lazzez A., Grati-Kamoun N., Caixach J. Modifications in virgin olive oil glycerolipid fingerprint during olive ripening by MALDI-TOF MS analysis. LWT-Food Sci. Technol. 2012;48:24–29. doi: 10.1016/j.lwt.2012.03.006. DOI

Tzompa-Sosa D.A., Ramel P.R., van Valenberg H.J.F., van Aken G.A. Formation of β polymorphs in milk fats with large differences in triacylglycerol profiles. J. Agric. Food Chem. 2016;64:4152–4157. doi: 10.1021/acs.jafc.5b05737. PubMed DOI

Tzompa-Sosa D.A., Meurs P.P., van Valenberg H.J.F. Triacylglycerol profile of summer and winter bovine milk fat and the feasibility of triacylglycerol fragmentation. Eur. J. Lipid Sci. Technol. 2018;120:1700291. doi: 10.1002/ejlt.201700291. DOI

Jackson R.S. Wine Science: Principles and Applications. 3rd ed. Academic Press; Amsterdam, The Netherlands: 2008. pp. 270–331.

Szilágyi Z., Vas G., Mády G., Vékey K. Investigation of macromolecules in wines by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1996;10:1141–1143. doi: 10.1002/(SICI)1097-0231(19960715)10:9<1141::AID-RCM607>3.0.CO;2-4. DOI

Marangon M., Van Sluyter S.C., Haynes P.A., Waters E.J. Grape and wine proteins: Their fractionation by hydrophobic interaction chromatography and identification by chromatographic and proteomic analysis. J. Agric. Food Chem. 2009;57:4415–4425. doi: 10.1021/jf9000742. PubMed DOI

Kupfer V.M., Vogt E.I., Ziegler T., Vogel R.F., Niessen L. Comparative protein profile analysis of wines made from Botrytis cinerea infected and healthy grapes reveals a novel biomarker for gushing of sparkling wines. Food Res. Int. 2017;99:501–509. doi: 10.1016/j.foodres.2017.06.004. PubMed DOI

Carpentieri A., Marino G., Amoresano A. Rapid fingerprinting of red wines by MALDI mass spectrometry. Anal. Bioanal. Chem. 2007;389:969–982. doi: 10.1007/s00216-007-1476-8. PubMed DOI

Spáčil Z., Shariatgorji M., Amini N., Solich P., Ilag L.L. Matrix-less laser desorption/ionisation mass spectrometry of polyphenols in red wine. Rapid Commun. Mass Spectrom. 2009;23:1834–1840. doi: 10.1002/rcm.4062. PubMed DOI

Pesavento I.C., Bertazzo A., Flamini R., Vedova A.D., De Rosso M., Seraglia R., Traldi P. Differentiation of Vitis vinifera varieties by MALDI-MS analysis of the grape seed proteins. J. Mass Spectrom. 2008;43:234–241. doi: 10.1002/jms.1295. PubMed DOI

Nunes-Miranda J.D., Santos H.M., Reboiro-Jato M., Fdez-Riverola F., Igrejas G., Lodeiro C., Capelo J.L. Direct matrix assisted laser desorption ionization mass spectrometry-based analysis of wine as a powerful tool for classification purposes. Talanta. 2012;91:72–76. doi: 10.1016/j.talanta.2012.01.017. PubMed DOI

Anderson H.E., Santos I.C., Hildebrand Z.L., Schug K.A. A review of the analytical methods used for beer ingredient and finished product analysis and quality control. Anal. Chim. Acta. 2019;1085:1–20. doi: 10.1016/j.aca.2019.07.061. PubMed DOI

Lauterbach A., Usbeck J.C., Behr J., Vogel R.F. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles. PLoS ONE. 2017;12:e0181694. doi: 10.1371/journal.pone.0181694. PubMed DOI PMC

Turvey M.E., Weiland F., Meneses J., Sterenberg N. Hoffmann, Identification of beer spoilage microorganisms using the MALDI Biotyper platform. Appl. Microbiol. Biotechnol. 2016;100:2761–2773. doi: 10.1007/s00253-016-7344-8. PubMed DOI

Bobalova J., Salplachta J., Chmelik J. Investigation of protein composition of barley by gel electrophoresis and MALDI mass spectrometry with regard to the malting and brewing process. J. Inst. Brew. 2008;114:22–26. doi: 10.1002/j.2050-0416.2008.tb00301.x. DOI

Šedo O., Márová I., Zdráhal Z. Beer fingerprinting by matrix-assisted laser desorption-ionization-time of flight mass spectrometry. Food Chem. 2012;135:473–478. doi: 10.1016/j.foodchem.2012.05.021. PubMed DOI

Šedo O., Kořán M., Jakešová M., Mikulíková R., Boháč M., Zdráhal Z. Rapid assignment of malting barley varieties by matrix-assisted laser desorption-ionization-time of flight mass spectrometry. Food Chem. 2016;206:124–130. doi: 10.1016/j.foodchem.2016.03.056. PubMed DOI

Park E., Yang H., Kim Y., Kim J. Analysis of oligosaccharides in beer using MALDI-TOF-MS. Food Chem. 2012;134:1658–1664. doi: 10.1016/j.foodchem.2012.03.069. PubMed DOI

Vinogradov E., Bock K. Structural determination of some new oligosaccharides and analysis of the branching pattern of isomaltooligosaccharides from beer. Carbohydr. Res. 1998;309:57–64. doi: 10.1016/S0008-6215(98)00119-0. PubMed DOI

Ling L., Jiang L., Chen Q., Zhao B., Li Y., Guo X. Rapid and accurate profiling of oligosaccharides in beer by using a reactive matrix via MALDI-TOF MS. Food Chem. 2021;340:128208. doi: 10.1016/j.foodchem.2020.128208. PubMed DOI

Taylor S.L., Nordlee J.A., Niemann L.M., Lambrecht D.M. Allergen immunoassays—Considerations for use of naturally incurred standards. Anal. Bioanal. Chem. 2009;395:83–92. doi: 10.1007/s00216-009-2944-0. PubMed DOI

Bloch H.A., Keşmir C., Petersen M., Jacobsen S., Søndergaard I. Identification of wheat varieties using matrix-assisted laser desorption/ionisation time-offlight mass spectrometry and an artificial neural network. Rapid Commun. Mass Spectrom. 1999;13:1535–1539. doi: 10.1002/(SICI)1097-0231(19990730)13:14<1535::AID-RCM686>3.0.CO;2-U. PubMed DOI

Jang Y.R., Cho K., Kim S., Sim J.R., Lee S.B., Kim B.G., Gu Y.Q., Altenbach S.B., Lim S.H., Goo T.W., et al. Comparison of MALDI-TOF-MS and RP-HPLC as rapid screening methods for wheat lines with altered gliadin compositions. Front. Plant Sci. 2020;11:600489. doi: 10.3389/fpls.2020.600489. PubMed DOI PMC

Horneffer V., Foster T.J., Velikov K.P. Fast characterization of industrial soy protein isolates by direct analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Agric. Food Chem. 2007;55:10505–10508. doi: 10.1021/jf071321y. PubMed DOI

Vernaza M.G., Dia V.P., Gonzalez de Mejla E., Chang Y.K. Antioxidant and antiinflammatory properties of germinated and hydrolysed Brazilian soybean flours. Food Chem. 2012;134:2217–2235. doi: 10.1016/j.foodchem.2012.04.037. PubMed DOI

Careri M., Elviri L., Mangia A., Zagnoni I., Agrimonti C., Visioli G., Marmiroli N. Analysis of protein profiles of genetically modified potato tubers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2003;17:479–483. doi: 10.1002/rcm.944. PubMed DOI

Mazzeo M.F., De Giulio B., Guerriero G., Ciarcia G., Malorni A., Russo G.L., Siciliano R.A. Fish authentication by MALDI-TOF mass spectrometry. J. Agric. Food Chem. 2008;56:11071–11076. doi: 10.1021/jf8021783. PubMed DOI

Stahl A., Schröder U. Development of a MALDI-TOF MS-based protein fingerprint database of common food fish allowing fast and reliable identification of fraud and substitution. J. Agric. Food Chem. 2017;65:7519–7527. doi: 10.1021/acs.jafc.7b02826. PubMed DOI

Ulrich S., Beindorf P.M., Biermaier B., Schwaiger K., Gareis M., Gottschalk C. A novel approach for the determination of freshness and identity of trouts by MALDI-TOF mass spectrometry. Food Control. 2017;80:281–289. doi: 10.1016/j.foodcont.2017.05.005. DOI

Rešetar Maslov D., Svirkova A., Allmaier G., Marchetti-Deschmann M., Kraljević Pavelić S. Optimization of MALDI-TOF mass spectrometry imaging for the visualization and comparison of peptide distributions in dry-cured ham muscle fibers. Food Chem. 2019;283:275–286. doi: 10.1016/j.foodchem.2018.12.126. PubMed DOI

Aubry L., Sayd T., Ferreira C., Chambon C., Vénien A., Blinet S., Bourin M., Travel A., Halgrain M., Santé-Lhoutellier V., et al. Detection of frozen–thawed duck fatty liver by MALDI-TOF mass spectrometry: A chemometrics study. Molecules. 2021;26:3508. doi: 10.3390/molecules26123508. PubMed DOI PMC

Théron L., Sayd T., Chambon C., Vautier A., Ferreira C., Aubry L., Ferraro V., Santé-Lhoutellier V. Toward the prediction of PSE-like muscle defect in hams: Using chemometrics for the spectral fingerprinting of plasma. Food Control. 2020;109:106929. doi: 10.1016/j.foodcont.2019.106929. DOI

Rau J., Korte N., Dyk M., Wenninger O., Schreiter P., Hiller E. Rapid animal species identification of feta and mozzarella cheese using MALDI-TOF mass-spectrometry. Food Control. 2020;117:107349. doi: 10.1016/j.foodcont.2020.107349. DOI

Rau J., Hiller E., Männig A., Dyk M., Wenninger O., Stoll P., Wibbelt G., Schreiter P. Animal species identification of meat using MALDI-TOF mass spectrometry. Asp. Food Control. Anim. Health. 2021;14:1–12. doi: 10.48414/aspects2021/14. DOI

Procida G., Campisi B., Seraglia R., Traldi P. Classification of green coffee beans by differences in protein composition obtained by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2003;17:140–148. doi: 10.1002/rcm.886. PubMed DOI

Wang J., Kliks M.M., Qu W., Jun S., Shi G., Li Q.X. Rapid determination of the geographical origin of honey based on protein fingerprinting and barcoding using MALDI TOF MS. J. Agric. Food Chem. 2009;57:10081–10088. doi: 10.1021/jf902286p. PubMed DOI

Bonatto C.C., Silva L.P. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry. J. Sci. Food Agric. 2015;95:1753–1756. doi: 10.1002/jsfa.6740. PubMed DOI

de Oliveira D.N., Camargo A.C.B., Melo C.F.O.R., Catharino R.R. A fast semi-quantitative screening for cocoa content in chocolates using MALDI-MSI. Food Res. Int. 2018;103:8–11. doi: 10.1016/j.foodres.2017.10.035. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...