Probing the Biology of Giardia intestinalis Mitosomes Using In Vivo Enzymatic Tagging
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26055323
PubMed Central
PMC4508323
DOI
10.1128/mcb.00448-15
PII: MCB.00448-15
Knihovny.cz E-zdroje
- MeSH
- biotinylace MeSH
- Escherichia coli enzymologie MeSH
- frakcionace buněk MeSH
- Giardia lamblia chemie cytologie metabolismus MeSH
- giardiáza parazitologie MeSH
- hmotnostní spektrometrie MeSH
- lidé MeSH
- ligasy tvořící vazby C-N metabolismus MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- organely chemie metabolismus MeSH
- proteiny z Escherichia coli metabolismus MeSH
- protozoální proteiny analýza izolace a purifikace metabolismus MeSH
- represorové proteiny metabolismus MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- birA protein, E coli MeSH Prohlížeč
- ligasy tvořící vazby C-N MeSH
- proteiny z Escherichia coli MeSH
- protozoální proteiny MeSH
- represorové proteiny MeSH
Giardia intestinalis parasites contain mitosomes, one of the simplest mitochondrion-related organelles. Strategies to identify the functions of mitosomes have been limited mainly to homology detection, which is not suitable for identifying species-specific proteins and their functions. An in vivo enzymatic tagging technique based on the Escherichia coli biotin ligase (BirA) has been introduced to G. intestinalis; this method allows for the compartment-specific biotinylation of a protein of interest. Known proteins involved in the mitosomal protein import were in vivo tagged, cross-linked, and used to copurify complexes from the outer and inner mitosomal membranes in a single step. New proteins were then identified by mass spectrometry. This approach enabled the identification of highly diverged mitosomal Tim44 (GiTim44), the first known component of the mitosomal inner membrane translocase (TIM). In addition, our subsequent bioinformatics searches returned novel diverged Tim44 paralogs, which mediate the translation and mitosomal insertion of mitochondrially encoded proteins in other eukaryotes. However, most of the identified proteins are specific to G. intestinalis and even absent from the related diplomonad parasite Spironucleus salmonicida, thus reflecting the unique character of the mitosomal metabolism. The in vivo enzymatic tagging also showed that proteins enter the mitosome posttranslationally in an unfolded state and without vesicular transport.
Zobrazit více v PubMed
Adam RD. 2001. Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475. doi:10.1128/CMR.14.3.447-475.2001. PubMed DOI PMC
Ankarklev J, Jerlström-Hultqvist J, Ringqvist E, Troell K, Svärd SG. 2010. Behind the smile: cell biology and disease mechanisms of Giardia species. Nat Rev Microbiol 8:413–422. doi:10.1038/nrmicro2317. PubMed DOI
Hehl AB, Marti M. 2004. Secretory protein trafficking in Giardia intestinalis. Mol Microbiol 53:19–28. doi:10.1111/j.1365-2958.2004.04115.x. PubMed DOI
Lanfredi-Rangel A, Attias M, de Carvalho TM, Kattenbach WM, De Souza W. 1998. The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. J Struct Biol 123:225–235. doi:10.1006/jsbi.1998.4035. PubMed DOI
Konrad C, Spycher C, Hehl AB. 2010. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog 6:e1000835. doi:10.1371/journal.ppat.1000835. PubMed DOI PMC
Dolezal P, Smíd O, Rada P, Zubácová Z, Bursać D, Suták R, Nebesárová J, Lithgow T, Tachezy J. 2005. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A 102:10924–10929. doi:10.1073/pnas.0500349102. PubMed DOI PMC
Jedelský PL, Doležal P, Rada P, Pyrih J, Smíd O, Hrdý I, Sedinová M, Marcinčiková M, Voleman L, Perry AJ, Beltrán NC, Lithgow T, Tachezy J. 2011. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6:e17285. doi:10.1371/journal.pone.0017285. PubMed DOI PMC
Regoes A, Zourmpanou D, León-Avila G, van der Giezen M, Tovar J, Hehl AB. 2005. Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem 280:30557–30563. doi:10.1074/jbc.M500787200. PubMed DOI
Roger AJ, Svärd SG, Tovar J, Clark CG, Smith MW, Gillin FD, Sogin ML. 1998. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A 95:229–234. doi:10.1073/pnas.95.1.229. PubMed DOI PMC
Tachezy J, Sánchez LB, Müller M. 2001. Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928. doi:10.1093/oxfordjournals.molbev.a003732. PubMed DOI
Likic VA, Dolezal P, Celik N, Dagley M, Lithgow T. 2010. Using hidden markov models to discover new protein transport machines. Methods Mol Biol 619:271–284. doi:10.1007/978-1-60327-412-8_16. PubMed DOI
Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schönfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C. 2003. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100:13207–13212. doi:10.1073/pnas.2135385100. PubMed DOI PMC
Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y, Loo JA, Johnson PJ. 2011. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 41:1421–1434. doi:10.1016/j.ijpara.2011.10.001. PubMed DOI PMC
Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD. 2009. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9:434–450. doi:10.1002/pmic.200800477. PubMed DOI PMC
Wampfler PB, Tosevski V, Nanni P, Spycher C, Hehl AB. 2014. Proteomics of secretory and endocytic organelles in Giardia lamblia. PLoS One 9:e94089. doi:10.1371/journal.pone.0094089. PubMed DOI PMC
Keister DB. 1983. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488. doi:10.1016/0035-9203(83)90120-7. PubMed DOI
Martincová E, Voleman L, Najdrová V, De Napoli M, Eshar S, Gualdron M, Hopp CS, Sanin DE, Tembo DL, Van Tyne D, Walker D, Marcinčiková M, Tachezy J, Doležal P. 2012. Live imaging of mitosomes and hydrogenosomes by HaloTag technology. PLoS One 7:e36314. doi:10.1371/journal.pone.0036314. PubMed DOI PMC
Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, Buchanan SK, Tachezy J, Lithgow T. 2009. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol 26:1941–1947. doi:10.1093/molbev/msp117. PubMed DOI PMC
Howarth M, Takao K, Hayashi Y, Ting AY. 2005. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 102:7583–7588. doi:10.1073/pnas.0503125102. PubMed DOI PMC
Gehde N, Hinrichs C, Montilla I, Charpian S, Lingelbach K, Przyborski JM. 2009. Protein unfolding is an essential requirement for transport across the parasitophorous vacuolar membrane of Plasmodium falciparum. Mol Microbiol 71:613–628. doi:10.1111/j.1365-2958.2008.06552.x. PubMed DOI
Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ, Šedinová M, Smíšková K, Novotný M, Beltrán NC, Hrdý I, Lithgow T, Tachezy J. 2011. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 6:e24428. doi:10.1371/journal.pone.0024428. PubMed DOI PMC
Söding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248. doi:10.1093/nar/gki408. PubMed DOI PMC
Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195. doi:10.1371/journal.pcbi.1002195. PubMed DOI PMC
Zhang Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. doi:10.1186/1471-2105-9-40. PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. doi:10.1006/jmbi.2000.4315. PubMed DOI
Käll L, Krogh A, Sonnhammer ELL. 2007. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35:W429–W432. doi:10.1093/nar/gkm256. PubMed DOI PMC
Howarth M, Ting AY. 2008. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat Protoc 3:534–545. doi:10.1038/nprot.2008.20. PubMed DOI PMC
Chacinska A, van der Laan M, Mehnert CS, Guiard B, Mick DU, Hutu DP, Truscott KN, Wiedemann N, Meisinger C, Pfanner N, Rehling P. 2010. Distinct forms of mitochondrial TOM-TIM supercomplexes define signal-dependent states of preprotein sorting. Mol Cell Biol 30:307–318. doi:10.1128/MCB.00749-09. PubMed DOI PMC
Tieu Q, Okreglak V, Naylor K, Nunnari J. 2002. The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol 158:445–452. doi:10.1083/jcb.200205031. PubMed DOI PMC
Yoon Y, Krueger EW, Oswald BJ, McNiven MA. 2003. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420. doi:10.1128/MCB.23.15.5409-5420.2003. PubMed DOI PMC
Merlin A, Voos W, Maarse AC, Meijer M, Pfanner N, Rassow J. 1999. The J-related segment of tim44 is essential for cell viability: a mutant Tim44 remains in the mitochondrial import site, but inefficiently recruits mtHsp70 and impairs protein translocation. J Cell Biol 145:961–972. doi:10.1083/jcb.145.5.961. PubMed DOI PMC
Ting S-Y, Schilke BA, Hayashi M, Craig EA. 2014. Architecture of the TIM23 inner mitochondrial translocon and interactions with the matrix import motor. J Biol Chem 289:28689–28696. doi:10.1074/jbc.M114.588152. PubMed DOI PMC
Brown A, Amunts A, Bai X-C, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V. 2014. Structure of the large ribosomal subunit from human mitochondria. Science 346:718–722. doi:10.1126/science.1258026. PubMed DOI PMC
Ott M, Prestele M, Bauerschmitt H, Funes S, Bonnefoy N, Herrmann JM. 2006. Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J 25:1603–1610. doi:10.1038/sj.emboj.7601070. PubMed DOI PMC
Lauwaet T, Davids BJ, Torres-Escobar A, Birkeland SR, Cipriano MJ, Preheim SP, Palm D, Svärd SG, McArthur AG, Gillin FD. 2007. Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol Biochem Parasitol 152:80–89. doi:10.1016/j.molbiopara.2006.12.001. PubMed DOI PMC
Cipollone R, Ascenzi P, Visca P. 2007. Common themes and variations in the rhodanese superfamily. IUBMB Life 59:51–59. doi:10.1080/15216540701206859. PubMed DOI
Bonomi F, Pagani S, Cerletti P, Cannella C. 1977. Rhodanese-mediated sulfur transfer to succinate dehydrogenase. Eur J Biochem 72:17–24. doi:10.1111/j.1432-1033.1977.tb11219.x. PubMed DOI
Ohno K, Takahashi Y, Hirose F, Inoue YH, Taguchi O, Nishida Y, Matsukage A, Yamaguchi M. 2000. Characterization of a Drosophila homologue of the human myelodysplasia/myeloid leukemia factor (MLF). Gene 260:133–143. doi:10.1016/S0378-1119(00)00447-9. PubMed DOI
Elias EV, Quiroga R, Gottig N, Nakanishi H, Nash TE, Neiman A, Lujan HD. 2008. Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J Biol Chem 283:35996–36010. doi:10.1074/jbc.M806545200. PubMed DOI PMC
Eilers M, Schatz G. 1986. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322:228–232. PubMed
Wang CC, Aldritt S. 1983. Purine salvage networks in Giardia lamblia. J Exp Med 158:1703–1712. doi:10.1084/jem.158.5.1703. PubMed DOI PMC
van der Giezen M, Tovar J. 2005. Degenerate mitochondria. EMBO Rep 6:525–530. doi:10.1038/sj.embor.7400440. PubMed DOI PMC
Clements A, Bursac D, Gatsos X, Perry AJ, Civciristov S, Celik N, Likic VA, Poggio S, Jacobs-Wagner C, Strugnell RA, Lithgow T. 2009. The reducible complexity of a mitochondrial molecular machine. Proc Natl Acad Sci U S A 106:15791–15795. doi:10.1073/pnas.0908264106. PubMed DOI PMC
Schey KL, Grey AC, Nicklay JJ. 2013. Mass spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 52:3807–3817. doi:10.1021/bi301604j. PubMed DOI PMC
Xu F, Jerlström-Hultqvist J, Einarsson E, Astvaldsson A, Svärd SG, Andersson JO. 2014. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet 10:e1004053. doi:10.1371/journal.pgen.1004053. PubMed DOI PMC
Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, Foo JH, Sedinová M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T. 2010. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 6:e1000812. doi:10.1371/journal.ppat.1000812. PubMed DOI PMC
Waller RF, Jabbour C, Chan NC, Celik N, Likic VA, Mulhern TD, Lithgow T. 2009. Evidence of a reduced and modified mitochondrial protein import apparatus in microsporidian mitosomes. Eukaryot Cell 8:19–26. doi:10.1128/EC.00313-08. PubMed DOI PMC
Handa N, Kishishita S, Morita S, Akasaka R, Jin Z, Chrzas J, Chen L, Liu Z-J, Wang B-C, Sugano S, Tanaka A, Terada T, Shirouzu M, Yokoyama S. 2007. Structure of the human Tim44 C-terminal domain in complex with pentaethylene glycol: ligand-bound form. Acta Crystallogr D Biol Crystallogr 63:1225–1234. doi:10.1107/S0907444907051463. PubMed DOI
Zarsky V, Tachezy J, Dolezal P. 2012. Tom40 is likely common to all mitochondria. Curr Biol 22:R479–R481; author reply, R481–R482. doi:10.1016/j.cub.2012.03.057. PubMed DOI
Baker KP, Schaniel A, Vestweber D, Schatz G. 1990. A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 348:605–609. doi:10.1038/348605a0. PubMed DOI
Yamano K, Tanaka-Yamano S, Endo T. 2010. Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep 11:187–193. doi:10.1038/embor.2009.283. PubMed DOI PMC
Yano M, Kanazawa M, Terada K, Namchai C, Yamaizumi M, Hanson B, Hoogenraad N, Mori M. 1997. Visualization of mitochondrial protein import in cultured mammalian cells with green fluorescent protein and effects of overexpression of the human import receptor Tom20. J Biol Chem 272:8459–8465. doi:10.1074/jbc.272.13.8459. PubMed DOI
Rojo M, Legros F, Chateau D, Lombès A. 2002. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663–1674. PubMed
Dolezal P, Likic V, Tachezy J, Lithgow T. 2006. Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318. doi:10.1126/science.1127895. PubMed DOI
Kozjak V, Wiedemann N, Milenkovic D, Lohaus C, Meyer HE, Guiard B, Meisinger C, Pfanner N. 2003. An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem 278:48520–48523. doi:10.1074/jbc.C300442200. PubMed DOI
Gentle I, Gabriel K, Beech P, Waller R, Lithgow T. 2004. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol 164:19–24. doi:10.1083/jcb.200310092. PubMed DOI PMC
Josyula R, Jin Z, Fu Z, Sha B. 2006. Crystal structure of yeast mitochondrial peripheral membrane protein Tim44p C-terminal domain. J Mol Biol 359:798–804. doi:10.1016/j.jmb.2006.04.020. PubMed DOI
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. doi:10.1093/nar/gku340. PubMed DOI PMC
Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis
The evolution of the Puf superfamily of proteins across the tree of eukaryotes
Dynamic secretome of Trichomonas vaginalis: Case study of β-amylases
Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes