Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3

. 2022 Aug ; 29 (8) : 820-830. [epub] 20220718

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid35851188

Grantová podpora
U24 GM129547 NIGMS NIH HHS - United States
R01 GM097572 NIGMS NIH HHS - United States
R01 GM125063 NIGMS NIH HHS - United States
DP1 GM105385 NIGMS NIH HHS - United States

Odkazy

PubMed 35851188
DOI 10.1038/s41594-022-00798-4
PII: 10.1038/s41594-022-00798-4
Knihovny.cz E-zdroje

Tail-anchored (TA) membrane proteins, accounting for roughly 2% of proteomes, are primarily targeted posttranslationally to the endoplasmic reticulum membrane by the guided entry of TA proteins (GET) pathway. For this complicated process, it remains unknown how the central targeting factor Get3 uses nucleotide to facilitate large conformational changes to recognize then bind clients while also preventing exposure of hydrophobic surfaces. Here, we identify the GET pathway in Giardia intestinalis and present the structure of the Get3-client complex in the critical postnucleotide-hydrolysis state, demonstrating that Get3 reorganizes the client-binding domain (CBD) to accommodate and shield the client transmembrane helix. Four additional structures of GiGet3, spanning the nucleotide-free (apo) open to closed transition and the ATP-bound state, reveal the details of nucleotide stabilization and occluded CBD. This work resolves key conundrums and allows for a complete model of the dramatic conformational landscape of Get3.

Zobrazit více v PubMed

Guna, A. & Hegde, R. S. Transmembrane domain recognition during membrane protein biogenesis and quality control. Current Biol. 28, R498–R511 (2018). DOI

Kutay, U., Hartmann, E. & Rapoport, T. A. A class of membrane proteins with a C-terminal anchor. Trends Cell Biol. 3, 72–75 (1993). PubMed DOI

Denic, V. A portrait of the GET pathway as a surprisingly complicated young man. Trends Biochem. Sci. 37, 411–417 (2012). PubMed DOI PMC

Wattenberg, B. W. & Lithgow, T. Targeting of C-terminal tail-anchored proteins: understanding how cytoplasmic activities are anchored to intracellular membranes. Traffic 2, 66–71 (2001). PubMed DOI

Chartron, J. W., Clemons, W. M. Jr. & Suloway, C. J. The complex process of GETting tail-anchored membrane proteins to the ER. Curr. Opin. Struct. Biol. 22, 217–224 (2012). PubMed DOI PMC

Borgese, N., Colombo, S. & Pedrazzini, E. The tale of tail-anchored proteins. J. Cell Biol. 161, 1013–1019 (2003). PubMed DOI PMC

Rabu, C., Schmid, V., Schwappach, B. & High, S. Biogenesis of tail-anchored proteins: the beginning for the end? J. Cell Sci. 122, 3605–3612 (2009). PubMed DOI PMC

Cavalier-Smith, T. & Chao, E. E.-Y. Phylogeny and classification of phylum Cercozoa (protozoa). Protist 154, 341–358 (2003). PubMed DOI

Wang, F., Brown, E. C., Mak, G., Zhuang, J. & Denic, V. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40, 159–171 (2010). PubMed DOI PMC

Simpson, P. J., Schwappach, B., Dohlman, H. G. & Isaacson, R. L. Structures of Get3, Get4, and Get5 provide new models for TA membrane protein targeting. Structure 18, 897–902 (2010). PubMed DOI PMC

Rome, M. E., Rao, M., Clemons, W. M. & Shan, S. O. Precise timing of ATPase activation drives targeting of tail-anchored proteins. Proc. Natl Acad. Sci. USA 110, 7666–7671 (2013). PubMed DOI PMC

Chartron, J. W., Gonzalez, G. M. & Clemons, W. M. A structural model of the Sgt2 protein and its interactions with chaperones and the Get4/Get5 complex. J. Biol. Chem. 286, 34325–34334 (2011). PubMed DOI PMC

Chio, U. S., Chung, S., Weiss, S. & Shan, S. O. A protean clamp guides membrane targeting of tail-anchored proteins. Proc. Natl Acad. Sci. USA 114, E8585–E8594 (2017). PubMed DOI PMC

Chartron, J. W., Suloway, C. J. M., Zaslaver, M. & Clemons, W. M. Structural characterization of the Get4/Get5 complex and its interaction with Get3. Proc. Natl Acad. Sci. USA 107, 12127–12132 (2010). PubMed DOI PMC

Shan, S. O. Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. J. Biol. Chem. 294, 16577–16586 (2019). PubMed DOI PMC

McDowell, M. A. et al. Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex. Molecular Cell 80, 72–86.e7 (2020). PubMed DOI

Mariappan, M. et al. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61–66 (2011). PubMed DOI PMC

Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361–366 (2009). PubMed DOI PMC

Suloway, C. J. M., Chartron, J. W., Zaslaver, M. & Clemons, W. M. Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc. Natl Acad. Sci. USA 106, 14849–14854 (2009). PubMed DOI PMC

Stefer, S. et al. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333, 758–762 (2011). PubMed DOI PMC

Bozkurt, G. et al. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc. Natl Acad. Sci. USA 106, 21131–21136 (2009). PubMed DOI PMC

Gristick, H. B. et al. Crystal structure of ATP-bound Get3–Get4–Get5 complex reveals regulation of Get3 by Get4. Nat. Struct. Mol. Biol. 21, 437–442 (2014). PubMed DOI PMC

Mateja, A. et al. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347, 1152–1155 (2015). PubMed DOI PMC

Koonin, E. V. A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J. Mol. Biol. 229, 1165–1174 (1993). PubMed DOI

Yamagata, A. et al. Structural insight into the membrane insertion of tail-anchored proteins by Get3. Genes Cells 15, 29–41 (2010). PubMed DOI

Xing, S. et al. Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance. Proc. Natl Acad. Sci. USA 114, E1544–E1553 (2017). PubMed PMC

Kumar, T., Maitra, S., Rahman, A. & Bhattacharjee, S. A conserved Guided Entry of Tail-anchored pathway is involved in the trafficking of a subset of membrane proteins in Plasmodium falciparum. PLoS Pathog. 17, 1–39 (2021).

Bodensohn, U. S. et al. The intracellular distribution of the components of the GET system in vascular plants. Biochim. Biophys. Acta: Mol. Cell Res. 1866, 1650–1662 (2019). DOI

Anderson, S. A., Satyanarayan, M. B., Wessendorf, R. L., Lu, Y. & Fernandez, D. E. A homolog of guided entry of tail-anchored proteins functions in membrane-specific protein targeting in chloroplasts of Arabidopsis. Plant Cell 33, 2812–2833 (2021). PubMed DOI PMC

Adam, R. D. Giardia duodenalis: biology and pathogenesis. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00024-19 (2021).

Rome, M. E., Chio, U. S., Rao, M., Gristick, H. & ou Shan, S. Differential gradients of interaction affinities drive efficient targeting and recycling in the get pathway. Proc. Natl Acad. Sci. USA 111, E4929–E4935 (2014). PubMed DOI PMC

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed DOI PMC

Asseck, L. Y. et al. Endoplasmic reticulum membrane receptors of the GET pathway are conserved throughout eukaryotes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2017636118 (2021).

Yamamoto, Y. & Sakisaka, T. Molecular machinery for insertion of tail-anchored membrane proteins into the endoplasmic reticulum membrane in mammalian cells. Mol. Cell 48, 387–397 (2012). PubMed DOI

Lin, K.-F., Fry, M. Y., Saladi, S. M. & Clemons, W. M. Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. J. Biol. Chem. https://doi.org/10.1016/j.jbc.2021.100441 (2021).

Cho, H. & Shan, S. O. Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting. EMBO J. https://doi.org/10.15252/embj.201899264 (2018).

Fry, M. Y., Saladi, S. M., Cunha, A. & Clemons, W. M. Jr Sequence-based features that are determinant for tail-anchored membrane protein sorting in eukaryotes. Traffic 22, 306–318 (2021). PubMed DOI

Aurrecoechea, C. et al. GiardiaDB and trichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res. 37, D526–D530 (2008). PubMed DOI PMC

Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008). PubMed DOI PMC

Zhao, G. & London, E. An amino acid ‘transmembrane tendency’ scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Sci. 15, 1987–2001 (2006). PubMed DOI PMC

Keszei, A., Yip, M., Hsieh, T.-C. & Shao, S. Structural insights into metazoan pretargeting get complexes. Nat. Struct. Mol. Biol. 28, 1029–1037 (2021). PubMed DOI

Chio, U. S., Chung, S., Weiss, S. & Shan, S. A chaperone lid ensures efficient and privileged client transfer during tail-anchored protein targeting. Cell Reports 26, 37–44.e7 (2019). PubMed DOI

Salonen, L. M., Ellermann, M. & Diederich, F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew. Chem. Int. Ed. 50, 4808–4842 (2011). DOI

Shao, S., Rodrigo-Brenni, M. C., Kivlen, M. H. & Hegde, R. S. Mechanistic basis for a molecular triage reaction. Science 355, 298–302 (2017). PubMed DOI PMC

Morgens, D. W. et al. Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins. eLife 8, e48434 (2019). PubMed DOI PMC

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997). PubMed DOI PMC

Hehl, A. B. & Marti, M. Secretory protein trafficking in Giardia intestinalis. Mol. Microbiol. 53, 19–28 (2004). PubMed DOI

Martincová, E. et al. Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol. Cell. Biol. 35, 2864–2874 (2015). PubMed DOI PMC

Saladi, S. M., Maggiolo, A. O., Radford, K. & Clemons, W. M. Structural biologists, let’s mind our colors. Preprint at bioRxiv https://doi.org/10.1101/2020.09.22.308593 (2020).

Pei, J., Kim, B.-H. & Grishin, N. V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295–2300 (2008). PubMed DOI PMC

Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009). PubMed DOI PMC

Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011). PubMed DOI PMC

Consortium, T. U. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2020). DOI

Richter, D. J., Berney, C., Strassert, J. F. H., Burki, F. & de Vargas, C. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotic life. Preprint at bioRxiv https://doi.org/10.1101/2020.06.30.180687 (2020).

Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinform. 20, 1160–1166 (2017). DOI

Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018). PubMed DOI

Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2020). DOI PMC

Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017). PubMed DOI

Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). PubMed DOI PMC

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014). PubMed DOI PMC

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). PubMed DOI PMC

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017). DOI PMC

Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021). PubMed DOI PMC

Keister, D. B. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans. Royal Soc. Tropical Med. Hyg. 77, 487–488 (1983). DOI

Doležal, P. et al. Giardia mitosomes and Trichomonad hydrogenosomes share a common mode of protein targeting. Proc. Natl Acad. Sci. USA 102, 10924–10929 (2005). PubMed DOI PMC

Voleman, L. et al. Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol. 15, 27–27 (2017). PubMed DOI PMC

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed DOI

Najdrová, V., Stairs, C. W., Vinopalová, M., Voleman, L. & Doležal, P. The evolution of the puf superfamily of proteins across the tree of eukaryotes. BMC Biol. 18, 77 (2020). PubMed DOI PMC

Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed DOI

Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011). PubMed DOI

Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016). PubMed DOI

Goedhart, J. & Luijsterburg, M. S. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci. Rep. 10, 20560 (2020). PubMed DOI PMC

Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Cell Struct. Funct. 20, 967–976 (2012).

Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes. Acta Crystallogr. Sect. D. 62, 859–866 (2006). DOI

Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D. 68, 352–367 (2012). DOI

Headd, J. J. et al. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallogr. Sect. D. 68, 381–390 (2012). DOI

Afonine, P. V., Grosse-Kunstleve, R. W., Urzhumtsev, A. & Adams, P. D. Automatic multiple-zone rigid-body refinement with a large convergence radius. J. Appl. Crystallogr. 42, 607–615 (2009). PubMed DOI PMC

Bunkóczi, G. & Read, R. J. Improvement of molecular-replacement models with Sculptor. Acta Crystallogr. Sect. D. 67, 303–312 (2011). DOI

Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D. 67, 355–367 (2011). DOI

Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018). PubMed DOI

Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D. 67, 235–242 (2011). DOI

Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). PubMed DOI

Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). PubMed DOI

Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). PubMed DOI PMC

Asarnow, D., Palovcak, E. & Cheng, Y. asarnow/pyem: UCSF pyem v0.5. Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).

Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). PubMed DOI PMC

Pintilie, G., Chen, D. H., Haase-Pettingell, C. A., King, J. A. & Chiu, W. Resolution and probabilistic models of components in cryo-EM maps of mature p22 bacteriophage. Biophys. J. 110, 827–839 (2016). PubMed DOI

Pettersen, E. F. et al. USCF Chimera – a visualization system of exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed DOI

Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008). PubMed DOI PMC

Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers educators, and developers. Protein Sci. 30, 70–82 (2021). PubMed DOI

Olp, M. D., Kalous, K. S. & Smith, B. C. ICEKAT: an interactive online tool for calculating initial rates from continuous enzyme kinetic traces. BMC Bioinf. 21, 186 (2020). DOI

Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979). DOI

Mock, J.-Y., Xu, Y., Ye, Y. & Clemons, W. M. Structural basis for regulation of the nucleo-cytoplasmic distribution of Bag6 by TRC35. Proc. Natl Acad. Sci. USA 114, 11679–11684 (2017). PubMed DOI PMC

Chartron, J. W., VanderVelde, D. G. & Clemons, W. M. Structures of the Sgt2/SGTA dimerization domain with the Get5/UBL4A UBL domain reveal an interaction that forms a conserved dynamic interface. Cell Reports 2, 1620–1632 (2012). PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace