Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
U24 GM129547
NIGMS NIH HHS - United States
R01 GM097572
NIGMS NIH HHS - United States
R01 GM125063
NIGMS NIH HHS - United States
DP1 GM105385
NIGMS NIH HHS - United States
PubMed
35851188
DOI
10.1038/s41594-022-00798-4
PII: 10.1038/s41594-022-00798-4
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfatasy metabolismus MeSH
- lidé MeSH
- Saccharomyces cerevisiae - proteiny * metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- transport proteinů MeSH
- výměnné faktory guaninnukleotidů metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- Saccharomyces cerevisiae - proteiny * MeSH
- výměnné faktory guaninnukleotidů MeSH
Tail-anchored (TA) membrane proteins, accounting for roughly 2% of proteomes, are primarily targeted posttranslationally to the endoplasmic reticulum membrane by the guided entry of TA proteins (GET) pathway. For this complicated process, it remains unknown how the central targeting factor Get3 uses nucleotide to facilitate large conformational changes to recognize then bind clients while also preventing exposure of hydrophobic surfaces. Here, we identify the GET pathway in Giardia intestinalis and present the structure of the Get3-client complex in the critical postnucleotide-hydrolysis state, demonstrating that Get3 reorganizes the client-binding domain (CBD) to accommodate and shield the client transmembrane helix. Four additional structures of GiGet3, spanning the nucleotide-free (apo) open to closed transition and the ATP-bound state, reveal the details of nucleotide stabilization and occluded CBD. This work resolves key conundrums and allows for a complete model of the dramatic conformational landscape of Get3.
Department of Parasitology Faculty of Science BIOCEV Charles University Prague Czech Republic
Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA USA
Zobrazit více v PubMed
Guna, A. & Hegde, R. S. Transmembrane domain recognition during membrane protein biogenesis and quality control. Current Biol. 28, R498–R511 (2018). DOI
Kutay, U., Hartmann, E. & Rapoport, T. A. A class of membrane proteins with a C-terminal anchor. Trends Cell Biol. 3, 72–75 (1993). PubMed DOI
Denic, V. A portrait of the GET pathway as a surprisingly complicated young man. Trends Biochem. Sci. 37, 411–417 (2012). PubMed DOI PMC
Wattenberg, B. W. & Lithgow, T. Targeting of C-terminal tail-anchored proteins: understanding how cytoplasmic activities are anchored to intracellular membranes. Traffic 2, 66–71 (2001). PubMed DOI
Chartron, J. W., Clemons, W. M. Jr. & Suloway, C. J. The complex process of GETting tail-anchored membrane proteins to the ER. Curr. Opin. Struct. Biol. 22, 217–224 (2012). PubMed DOI PMC
Borgese, N., Colombo, S. & Pedrazzini, E. The tale of tail-anchored proteins. J. Cell Biol. 161, 1013–1019 (2003). PubMed DOI PMC
Rabu, C., Schmid, V., Schwappach, B. & High, S. Biogenesis of tail-anchored proteins: the beginning for the end? J. Cell Sci. 122, 3605–3612 (2009). PubMed DOI PMC
Cavalier-Smith, T. & Chao, E. E.-Y. Phylogeny and classification of phylum Cercozoa (protozoa). Protist 154, 341–358 (2003). PubMed DOI
Wang, F., Brown, E. C., Mak, G., Zhuang, J. & Denic, V. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40, 159–171 (2010). PubMed DOI PMC
Simpson, P. J., Schwappach, B., Dohlman, H. G. & Isaacson, R. L. Structures of Get3, Get4, and Get5 provide new models for TA membrane protein targeting. Structure 18, 897–902 (2010). PubMed DOI PMC
Rome, M. E., Rao, M., Clemons, W. M. & Shan, S. O. Precise timing of ATPase activation drives targeting of tail-anchored proteins. Proc. Natl Acad. Sci. USA 110, 7666–7671 (2013). PubMed DOI PMC
Chartron, J. W., Gonzalez, G. M. & Clemons, W. M. A structural model of the Sgt2 protein and its interactions with chaperones and the Get4/Get5 complex. J. Biol. Chem. 286, 34325–34334 (2011). PubMed DOI PMC
Chio, U. S., Chung, S., Weiss, S. & Shan, S. O. A protean clamp guides membrane targeting of tail-anchored proteins. Proc. Natl Acad. Sci. USA 114, E8585–E8594 (2017). PubMed DOI PMC
Chartron, J. W., Suloway, C. J. M., Zaslaver, M. & Clemons, W. M. Structural characterization of the Get4/Get5 complex and its interaction with Get3. Proc. Natl Acad. Sci. USA 107, 12127–12132 (2010). PubMed DOI PMC
Shan, S. O. Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. J. Biol. Chem. 294, 16577–16586 (2019). PubMed DOI PMC
McDowell, M. A. et al. Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex. Molecular Cell 80, 72–86.e7 (2020). PubMed DOI
Mariappan, M. et al. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61–66 (2011). PubMed DOI PMC
Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361–366 (2009). PubMed DOI PMC
Suloway, C. J. M., Chartron, J. W., Zaslaver, M. & Clemons, W. M. Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc. Natl Acad. Sci. USA 106, 14849–14854 (2009). PubMed DOI PMC
Stefer, S. et al. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333, 758–762 (2011). PubMed DOI PMC
Bozkurt, G. et al. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc. Natl Acad. Sci. USA 106, 21131–21136 (2009). PubMed DOI PMC
Gristick, H. B. et al. Crystal structure of ATP-bound Get3–Get4–Get5 complex reveals regulation of Get3 by Get4. Nat. Struct. Mol. Biol. 21, 437–442 (2014). PubMed DOI PMC
Mateja, A. et al. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347, 1152–1155 (2015). PubMed DOI PMC
Koonin, E. V. A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J. Mol. Biol. 229, 1165–1174 (1993). PubMed DOI
Yamagata, A. et al. Structural insight into the membrane insertion of tail-anchored proteins by Get3. Genes Cells 15, 29–41 (2010). PubMed DOI
Xing, S. et al. Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance. Proc. Natl Acad. Sci. USA 114, E1544–E1553 (2017). PubMed PMC
Kumar, T., Maitra, S., Rahman, A. & Bhattacharjee, S. A conserved Guided Entry of Tail-anchored pathway is involved in the trafficking of a subset of membrane proteins in Plasmodium falciparum. PLoS Pathog. 17, 1–39 (2021).
Bodensohn, U. S. et al. The intracellular distribution of the components of the GET system in vascular plants. Biochim. Biophys. Acta: Mol. Cell Res. 1866, 1650–1662 (2019). DOI
Anderson, S. A., Satyanarayan, M. B., Wessendorf, R. L., Lu, Y. & Fernandez, D. E. A homolog of guided entry of tail-anchored proteins functions in membrane-specific protein targeting in chloroplasts of Arabidopsis. Plant Cell 33, 2812–2833 (2021). PubMed DOI PMC
Adam, R. D. Giardia duodenalis: biology and pathogenesis. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00024-19 (2021).
Rome, M. E., Chio, U. S., Rao, M., Gristick, H. & ou Shan, S. Differential gradients of interaction affinities drive efficient targeting and recycling in the get pathway. Proc. Natl Acad. Sci. USA 111, E4929–E4935 (2014). PubMed DOI PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed DOI PMC
Asseck, L. Y. et al. Endoplasmic reticulum membrane receptors of the GET pathway are conserved throughout eukaryotes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2017636118 (2021).
Yamamoto, Y. & Sakisaka, T. Molecular machinery for insertion of tail-anchored membrane proteins into the endoplasmic reticulum membrane in mammalian cells. Mol. Cell 48, 387–397 (2012). PubMed DOI
Lin, K.-F., Fry, M. Y., Saladi, S. M. & Clemons, W. M. Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. J. Biol. Chem. https://doi.org/10.1016/j.jbc.2021.100441 (2021).
Cho, H. & Shan, S. O. Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting. EMBO J. https://doi.org/10.15252/embj.201899264 (2018).
Fry, M. Y., Saladi, S. M., Cunha, A. & Clemons, W. M. Jr Sequence-based features that are determinant for tail-anchored membrane protein sorting in eukaryotes. Traffic 22, 306–318 (2021). PubMed DOI
Aurrecoechea, C. et al. GiardiaDB and trichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res. 37, D526–D530 (2008). PubMed DOI PMC
Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008). PubMed DOI PMC
Zhao, G. & London, E. An amino acid ‘transmembrane tendency’ scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity. Protein Sci. 15, 1987–2001 (2006). PubMed DOI PMC
Keszei, A., Yip, M., Hsieh, T.-C. & Shao, S. Structural insights into metazoan pretargeting get complexes. Nat. Struct. Mol. Biol. 28, 1029–1037 (2021). PubMed DOI
Chio, U. S., Chung, S., Weiss, S. & Shan, S. A chaperone lid ensures efficient and privileged client transfer during tail-anchored protein targeting. Cell Reports 26, 37–44.e7 (2019). PubMed DOI
Salonen, L. M., Ellermann, M. & Diederich, F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew. Chem. Int. Ed. 50, 4808–4842 (2011). DOI
Shao, S., Rodrigo-Brenni, M. C., Kivlen, M. H. & Hegde, R. S. Mechanistic basis for a molecular triage reaction. Science 355, 298–302 (2017). PubMed DOI PMC
Morgens, D. W. et al. Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins. eLife 8, e48434 (2019). PubMed DOI PMC
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997). PubMed DOI PMC
Hehl, A. B. & Marti, M. Secretory protein trafficking in Giardia intestinalis. Mol. Microbiol. 53, 19–28 (2004). PubMed DOI
Martincová, E. et al. Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Mol. Cell. Biol. 35, 2864–2874 (2015). PubMed DOI PMC
Saladi, S. M., Maggiolo, A. O., Radford, K. & Clemons, W. M. Structural biologists, let’s mind our colors. Preprint at bioRxiv https://doi.org/10.1101/2020.09.22.308593 (2020).
Pei, J., Kim, B.-H. & Grishin, N. V. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 36, 2295–2300 (2008). PubMed DOI PMC
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009). PubMed DOI PMC
Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011). PubMed DOI PMC
Consortium, T. U. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2020). DOI
Richter, D. J., Berney, C., Strassert, J. F. H., Burki, F. & de Vargas, C. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotic life. Preprint at bioRxiv https://doi.org/10.1101/2020.06.30.180687 (2020).
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinform. 20, 1160–1166 (2017). DOI
Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018). PubMed DOI
Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2020). DOI PMC
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017). PubMed DOI
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). PubMed DOI PMC
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014). PubMed DOI PMC
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). PubMed DOI PMC
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017). DOI PMC
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021). PubMed DOI PMC
Keister, D. B. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans. Royal Soc. Tropical Med. Hyg. 77, 487–488 (1983). DOI
Doležal, P. et al. Giardia mitosomes and Trichomonad hydrogenosomes share a common mode of protein targeting. Proc. Natl Acad. Sci. USA 102, 10924–10929 (2005). PubMed DOI PMC
Voleman, L. et al. Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol. 15, 27–27 (2017). PubMed DOI PMC
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed DOI
Najdrová, V., Stairs, C. W., Vinopalová, M., Voleman, L. & Doležal, P. The evolution of the puf superfamily of proteins across the tree of eukaryotes. BMC Biol. 18, 77 (2020). PubMed DOI PMC
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). PubMed DOI
Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011). PubMed DOI
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016). PubMed DOI
Goedhart, J. & Luijsterburg, M. S. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci. Rep. 10, 20560 (2020). PubMed DOI PMC
Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Cell Struct. Funct. 20, 967–976 (2012).
Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution – from diffraction images to an initial model in minutes. Acta Crystallogr. Sect. D. 62, 859–866 (2006). DOI
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D. 68, 352–367 (2012). DOI
Headd, J. J. et al. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallogr. Sect. D. 68, 381–390 (2012). DOI
Afonine, P. V., Grosse-Kunstleve, R. W., Urzhumtsev, A. & Adams, P. D. Automatic multiple-zone rigid-body refinement with a large convergence radius. J. Appl. Crystallogr. 42, 607–615 (2009). PubMed DOI PMC
Bunkóczi, G. & Read, R. J. Improvement of molecular-replacement models with Sculptor. Acta Crystallogr. Sect. D. 67, 303–312 (2011). DOI
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D. 67, 355–367 (2011). DOI
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018). PubMed DOI
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D. 67, 235–242 (2011). DOI
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). PubMed DOI
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). PubMed DOI
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). PubMed DOI PMC
Asarnow, D., Palovcak, E. & Cheng, Y. asarnow/pyem: UCSF pyem v0.5. Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). PubMed DOI PMC
Pintilie, G., Chen, D. H., Haase-Pettingell, C. A., King, J. A. & Chiu, W. Resolution and probabilistic models of components in cryo-EM maps of mature p22 bacteriophage. Biophys. J. 110, 827–839 (2016). PubMed DOI
Pettersen, E. F. et al. USCF Chimera – a visualization system of exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed DOI
Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008). PubMed DOI PMC
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers educators, and developers. Protein Sci. 30, 70–82 (2021). PubMed DOI
Olp, M. D., Kalous, K. S. & Smith, B. C. ICEKAT: an interactive online tool for calculating initial rates from continuous enzyme kinetic traces. BMC Bioinf. 21, 186 (2020). DOI
Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979). DOI
Mock, J.-Y., Xu, Y., Ye, Y. & Clemons, W. M. Structural basis for regulation of the nucleo-cytoplasmic distribution of Bag6 by TRC35. Proc. Natl Acad. Sci. USA 114, 11679–11684 (2017). PubMed DOI PMC
Chartron, J. W., VanderVelde, D. G. & Clemons, W. M. Structures of the Sgt2/SGTA dimerization domain with the Get5/UBL4A UBL domain reveal an interaction that forms a conserved dynamic interface. Cell Reports 2, 1620–1632 (2012). PubMed DOI