Staging Encystation Progression in Giardia lamblia Using Encystation-Specific Vesicle Morphology and Associating Molecular Markers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P41 GM103533
NIGMS NIH HHS - United States
R01 AI110708
NIAID NIH HHS - United States
PubMed
33987184
PubMed Central
PMC8111296
DOI
10.3389/fcell.2021.662945
Knihovny.cz E-zdroje
- Klíčová slova
- ESV, Giardia, Rac, Rho GTPase, encystation, membrane trafficking,
- Publikační typ
- časopisecké články MeSH
Differentiation into environmentally resistant cysts is required for transmission of the ubiquitous intestinal parasite Giardia lamblia. Encystation in Giardia requires the production, processing and transport of Cyst Wall Proteins (CWPs) in developmentally induced, Golgi-like, Encystation Specific Vesicles (ESVs). Progress through this trafficking pathway can be followed by tracking CWP localization over time. However, there is no recognized system to distinguish the advancing stages of this process which can complete at variable rates depending on how encystation is induced. Here, we propose a staging system for encysting Giardia based on the morphology of CWP1-stained ESVs. We demonstrate the molecular distinctiveness of maturing ESVs at these stages by following GlRab GTPases through encystation. Previously, we established that Giardia's sole Rho family GTPase, GlRac, associates with ESVs and has a role in regulating their maturation and the secretion of their cargo. As a proof of principle, we delineate the relationship between GlRac and ESV stages. Through proteomic studies, we identify putative interactors of GlRac that could be used as additional ESV stage markers. This staging system provides a common descriptor of ESV maturation regardless of the source of encysting cells. Furthermore, the identified set of molecular markers for ESV stages will be a powerful tool for characterizing trafficking mutants that impair ESV maturation and morphology.
Department of Biology University of Washington Seattle WA United States
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Department of Genome Sciences University of Washington Seattle WA United States
Zobrazit více v PubMed
Bolte S., Cordelières F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224 213–232. 10.1111/j.1365-2818.2006.01706.x PubMed DOI
Boucher S. E. M., Gillin F. D. (1990). Excystation of in vitro-derived Giardia lamblia cysts. Infect. Immun. 58 3516–3522. 10.1128/iai.58.11.3516-3522.1990 PubMed DOI PMC
Chatterjee A., Carpentieri A., Ratner D. M., Bullitt E., Costello C. E., Robbins P. W., et al. (2010). Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GaINAc homopolymer. PLoS Pathogens 6:e1001059. 10.1371/journal.ppat.1001059 PubMed DOI PMC
Davids B. J., Mehta K., Fesus L., McCaffery J. M., Gillin F. D. (2004). Dependence of Giardia lamblia encystation on novel transglutaminase activity. Mole. Biochem. Parasitol. 136 173–180. 10.1016/j.molbiopara.2004.03.011 PubMed DOI
DuBois K. N., Abodeely M., Sakanari J., Craik C. S., Lee M., McKerrow J. H., et al. (2008). Identification of the major cysteine protease of Giardia and its role in encystation. J. Biol. Chem. 283 18024–18031. 10.1074/jbc.M802133200 PubMed DOI PMC
Eichinger D. (2001). Encystation in parasitic protozoa. Curr. Opin. Microbiol. 4 421–426. 10.1016/S1369-5274(00)00229-0 PubMed DOI
Einarsson E., Troell K., Hoeppner M. P., Grabherr M., Ribacke U., Svärd S. G. (2016). Coordinated changes in gene expression throughout encystation of giardia intestinalis. PLoS Negl. Trop Dis. 10:e0004571. 10.1371/journal.pntd.0004571 PubMed DOI PMC
Eng J. K., Jahan T. A., Hoopmann M. R. (2013). Comet: an open-source MS/MS sequence database search tool. Proteomics 13 22–24. 10.1002/pmic.201200439 PubMed DOI
Faso C., Konrad C., Schraner E. M., Hehl A. B. (2013). Export of cyst wall material and golgi organelle neogenesis in giardia lamblia depend on endoplasmic reticulum exit sites. Cell. Microbiol. 15 537–553. 10.1111/cmi.12054 PubMed DOI
Frontera L. S., Moyano S., Quassollo G., Lanfredi-Rangel A., Rópolo A. S., Touz M. C. (2018). Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. Sci. Rep. 8:18020. 10.1038/s41598-018-36563-1 PubMed DOI PMC
Gerwig G. J., Van Albert Kuik J., Leeflang B. R., Kamerling J. P., Vliegenthart J. F. G., Karr C. D., et al. (2002). The Giardia intestinal filamentous cyst wall contains a novel β(1-3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. Glycobiology 12 499–505. 10.1093/glycob/cwf059 PubMed DOI
Gibson D. G., Young L., Chuang R.-Y., Venter J. C., Hutchison C. A., Smith H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6 343–345. 10.1038/nmeth.1318 PubMed DOI
Gourguechon S., Cande W. Z. (2011). Rapid tagging and integration of genes in Giardia intestinalis. Eukaryotic Cell 10 142–145. 10.1128/EC.00190-10 PubMed DOI PMC
Hardin W. R., M Alas G. C., Taparia N., Thomas E. B., Hvorecny K. L., Halpern A. R., et al. (2021). The Giardia lamellipodium-like ventrolateral flange supports attachment and rapid cytokinesis. BioRxiv [preprint] 10.1101/2021.01.31.429041 DOI
Hehl A. B., Marti M., Köhler P. (2000). Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia. Mol. Biol. Cell 11 1789–1800. 10.1091/mbc.11.5.1789 PubMed DOI PMC
Hodge R. G., Ridley A. J. (2016). Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17 496–510. 10.1038/nrm.2016.67 PubMed DOI
Ioannou M. S., McPherson P. S. (2016). Regulation of cancer cell behavior by the small GTPase Rab13. J. Biol. Chem. 291 9929–9937. 10.1074/jbc.R116.715193 PubMed DOI PMC
Käll L., Canterbury J. D., Weston J., Noble W. S., MacCoss M. J. (2007). Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4 923–925. 10.1038/nmeth1113 PubMed DOI
Konrad C., Spycher C., Hehl A. B. (2010). Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathogens 6:e1000835. 10.1371/journal.ppat.1000835 PubMed DOI PMC
Krtková J., Thomas E. B., Alas G. C. M., Schraner E. M., Behjatnia H. R., Hehl A. B., et al. (2016). Rac regulates giardia lamblia encystation by coordinating cyst wall protein trafficking and secretion. MBio 7:e01003-16 10.1128/mBio.01003-16 PubMed DOI PMC
Krtková J., Xu J., Lalle M., Steele-Ogus M., Alas G. C. M., Sept D., et al. (2017). 14-3-3 regulates actin filament formation in the deep-branching eukaryote giardia lamblia. MSphere 2:e00248-17. 10.1128/msphere.00248-17 PubMed DOI PMC
Lane S., Lloyd D. (2002). Current trends in research into the waterborne parasite Giardia. Crit. Rev. Microbiol. 28 123–147. 10.1080/1040-840291046713 PubMed DOI
Lawson C. D., Ridley A. J. (2018). Rho GTPase signaling complexes in cell migration and invasion. J. Cell Biol. 217 447–457. 10.1083/jcb.201612069 PubMed DOI PMC
Li G., Marlin M. C. (2015). Rab family of GTpases. Methods Mol. Biol. 1298 1–15. 10.1007/978-1-4939-2569-8_1 PubMed DOI PMC
Luján H. D., Mowatt M. R., Byrd L. G., Nash T. E. (1996). Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia. Proc. Natl. Acad. Sci. U.S.A. 93 7628–7633. 10.1073/pnas.93.15.7628 PubMed DOI PMC
Lujan H. D., Mowatt M. R., Conrad J. T., Bowers B., Nash T. E. (1995). Identification of a novel Giardia lamblia cyst wall protein with leucine- rich repeats: implications for secretory granule formation and protein assembly into the cyst wall. J. Biol. Chem. 270 29307–29313. 10.1074/jbc.270.49.29307 PubMed DOI
Mani S., Thattai M. (2016). Stacking the odds for golgi cisternal maturation. ELife 5:e16231. 10.7554/eLife.16231 PubMed DOI PMC
Manser E., Leung T., Salihuddin H., Zhao Z. S., Lim L. (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367 40–46. 10.1038/367040a0 PubMed DOI
Marti M., Li Y., Schraner E. M., Wild P., Köhler P., Hehl A. B. (2003). The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Mol. Biol. Cell 14 1433–1447. 10.1091/mbc.E02-08-0467 PubMed DOI PMC
Merino M. C., Zamponi N., Vranych C. V., Touz M. C., Rópolo A. S. (2014). Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the encystation process. PLoS Negl. Trop. Dis. 8:e2997. 10.1371/journal.pntd.0002997 PubMed DOI PMC
Michaels S. A., Shih H.-W., Zhang B., Navaluna E. D., Zhang Z., Ranade R. M., et al. (2020). Methionyl-tRNA synthetase inhibitor has potent in vivo activity in a novel Giardia lamblia luciferase murine infection model. J. Antimicrob. Chemother. 75 1218–1227. 10.1093/jac/dkz567 PubMed DOI PMC
Minamino N., Ueda T. (2019). RAB GTPases and their effectors in plant endosomal transport. Curr. Opin. Plant Biol. 52 61–68. 10.1016/j.pbi.2019.07.007 PubMed DOI
Paredez A. R., Nayeri A., Xu J. W., Krtková J., Cande W. Z., Zacheus Cande W. (2014). Identification of obscure yet conserved actin-associated proteins in Giardia lamblia. Eukaryotic Cell 13 776–784. 10.1128/EC.00041-14 PubMed DOI PMC
Paredez A. R., Assafa Z. J., Sept D., Timofejeva L., Dawsond S. C., Wang C. J. R., et al. (2011). An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 108 6151–6156. 10.1073/pnas.1018593108 PubMed DOI PMC
Pfeffer S. R. (2017). Rab GTPases: master regulators that establish the secretory and endocytic pathways. Mol. Biol. Cell 28 712–715. 10.1091/mbc.E16-10-0737 PubMed DOI PMC
Pham J. K., Nosala C., Scott E. Y., Nguyen K. F., Hagen K. D., Starcevich H. N., et al. (2017). Transcriptomic profiling of high-density giardia foci encysting in the murine proximal intestine. Front. Cell. Infect. Microbiol. 7:227. 10.3389/fcimb.2017.00227 PubMed DOI PMC
Phuyal S., Farhan H. (2019). Multifaceted Rho GTPase signaling at the endomembranes. Front. Cell Dev. Biol. 7:127. 10.3389/fcell.2019.00127 PubMed DOI PMC
Reiner D. S., Ankarklev J., Troell K., Palm D., Bernander R., Gillin F. D., et al. (2008). Synchronisation of Giardia lamblia: identification of cell cycle stage-specific genes and a differentiation restriction point. Int. J. Parasitol. 38 935–944. 10.1016/j.ijpara.2007.12.005 PubMed DOI
Reiner D. S., McCaffery J. M., Gillin F. D. (2001). Reversible interruption of Giardia lamblia cyst wall protein transport in a novel regulated secretory pathway. Cell. Microbiol. 3 459–472. 10.1046/j.1462-5822.2001.00129.x PubMed DOI
Rivera-Molina F. E., Novick P. J. (2009). A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proc. Natl. Acad. Sci. U.S.A. 106 14408–14413. 10.1073/pnas.0906536106 PubMed DOI PMC
Saraste J. (2016). Spatial and functional aspects of ER-Golgi rabs and tethers. Front. Cell Dev. Biol. 4:28. 10.3389/fcell.2016.00028 PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Slavin I., Saura A., Carranza P. G., Touz M. C., Nores M. J., Luján H. D. (2002). Dephosphorylation of cyst wall proteins by a secreted lysosomal acid phosphatase is essential for excystation of Giardia lamblia. Mol. Biochem. Parasitol. 122 95–98. 10.1016/S0166-6851(02)00065-8 PubMed DOI
Srinivasan S., Wang F., Glavas S., Ott A., Hofmann F., Aktories K., et al. (2003). Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol. 160 375–385. 10.1083/jcb.200208179 PubMed DOI PMC
Štefanić S., Morf L., Kulangara C., Regös A., Sonda S., Schraner E., et al. (2009). Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J. Cell Sci. 122 2846–2856. 10.1242/jcs.049411 PubMed DOI
Sun C. H., McCaffery J. M., Reiner D. S., Gillin F. D. (2003). Mining the Giardia lamblia genome for new cyst wall proteins. J. Biol. Chem. 278 21701–21708. 10.1074/jbc.M302023200 PubMed DOI
Touz M. C., Nores M. J., Slavin I., Carmona C., Conrad J. T., Mowatt M. R., et al. (2002). The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. J. Biol. Chem. 277 8474–8481. 10.1074/jbc.M110250200 PubMed DOI
Touz M. C., Zamponi N. (2017). Sorting without a Golgi complex. Traffic 18 637–645. 10.1111/tra.12500 PubMed DOI
Vernoud V., Horton A. C., Yang Z., Nielsen E. (2003). Analysis of the small GTPase gene superfamily of arabidopsis. Plant Physiol. 131 1191–1208. 10.1104/pp.013052 PubMed DOI PMC
Vranych C. V., Rivero M. R., Merino M. C., Mayol G. F., Zamponi N., Maletto B. A., et al. (2014). SUMOylation and deimination of proteins: two epigenetic modifications involved in Giardia encystation. Biochim. Biophys. Acta - Mol. Cell Res. 1843 1805–1817. 10.1016/j.bbamcr.2014.04.014 PubMed DOI
Wiśniewski J. R., Zougman A., Nagaraj N., Mann M. (2009). Universal sample preparation method for proteome analysis. Nat. Methods 6 359–362. 10.1038/nmeth.1322 PubMed DOI
The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment