Staging Encystation Progression in Giardia lamblia Using Encystation-Specific Vesicle Morphology and Associating Molecular Markers

. 2021 ; 9 () : 662945. [epub] 20210427

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33987184

Grantová podpora
P41 GM103533 NIGMS NIH HHS - United States
R01 AI110708 NIAID NIH HHS - United States

Differentiation into environmentally resistant cysts is required for transmission of the ubiquitous intestinal parasite Giardia lamblia. Encystation in Giardia requires the production, processing and transport of Cyst Wall Proteins (CWPs) in developmentally induced, Golgi-like, Encystation Specific Vesicles (ESVs). Progress through this trafficking pathway can be followed by tracking CWP localization over time. However, there is no recognized system to distinguish the advancing stages of this process which can complete at variable rates depending on how encystation is induced. Here, we propose a staging system for encysting Giardia based on the morphology of CWP1-stained ESVs. We demonstrate the molecular distinctiveness of maturing ESVs at these stages by following GlRab GTPases through encystation. Previously, we established that Giardia's sole Rho family GTPase, GlRac, associates with ESVs and has a role in regulating their maturation and the secretion of their cargo. As a proof of principle, we delineate the relationship between GlRac and ESV stages. Through proteomic studies, we identify putative interactors of GlRac that could be used as additional ESV stage markers. This staging system provides a common descriptor of ESV maturation regardless of the source of encysting cells. Furthermore, the identified set of molecular markers for ESV stages will be a powerful tool for characterizing trafficking mutants that impair ESV maturation and morphology.

Zobrazit více v PubMed

Bolte S., Cordelières F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. PubMed DOI

Boucher S. E. M., Gillin F. D. (1990). Excystation of in vitro-derived Giardia lamblia cysts. PubMed DOI PMC

Chatterjee A., Carpentieri A., Ratner D. M., Bullitt E., Costello C. E., Robbins P. W., et al. (2010). Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GaINAc homopolymer. PubMed DOI PMC

Davids B. J., Mehta K., Fesus L., McCaffery J. M., Gillin F. D. (2004). Dependence of Giardia lamblia encystation on novel transglutaminase activity. PubMed DOI

DuBois K. N., Abodeely M., Sakanari J., Craik C. S., Lee M., McKerrow J. H., et al. (2008). Identification of the major cysteine protease of Giardia and its role in encystation. PubMed DOI PMC

Eichinger D. (2001). Encystation in parasitic protozoa. PubMed DOI

Einarsson E., Troell K., Hoeppner M. P., Grabherr M., Ribacke U., Svärd S. G. (2016). Coordinated changes in gene expression throughout encystation of giardia intestinalis. PubMed DOI PMC

Eng J. K., Jahan T. A., Hoopmann M. R. (2013). Comet: an open-source MS/MS sequence database search tool. PubMed DOI

Faso C., Konrad C., Schraner E. M., Hehl A. B. (2013). Export of cyst wall material and golgi organelle neogenesis in giardia lamblia depend on endoplasmic reticulum exit sites. PubMed DOI

Frontera L. S., Moyano S., Quassollo G., Lanfredi-Rangel A., Rópolo A. S., Touz M. C. (2018). Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. PubMed DOI PMC

Gerwig G. J., Van Albert Kuik J., Leeflang B. R., Kamerling J. P., Vliegenthart J. F. G., Karr C. D., et al. (2002). The Giardia intestinal filamentous cyst wall contains a novel β(1-3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. PubMed DOI

Gibson D. G., Young L., Chuang R.-Y., Venter J. C., Hutchison C. A., Smith H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. PubMed DOI

Gourguechon S., Cande W. Z. (2011). Rapid tagging and integration of genes in Giardia intestinalis. PubMed DOI PMC

Hardin W. R., M Alas G. C., Taparia N., Thomas E. B., Hvorecny K. L., Halpern A. R., et al. (2021). The Giardia lamellipodium-like ventrolateral flange supports attachment and rapid cytokinesis. DOI

Hehl A. B., Marti M., Köhler P. (2000). Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia. PubMed DOI PMC

Hodge R. G., Ridley A. J. (2016). Regulating Rho GTPases and their regulators. PubMed DOI

Ioannou M. S., McPherson P. S. (2016). Regulation of cancer cell behavior by the small GTPase Rab13. PubMed DOI PMC

Käll L., Canterbury J. D., Weston J., Noble W. S., MacCoss M. J. (2007). Semi-supervised learning for peptide identification from shotgun proteomics datasets. PubMed DOI

Konrad C., Spycher C., Hehl A. B. (2010). Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PubMed DOI PMC

Krtková J., Thomas E. B., Alas G. C. M., Schraner E. M., Behjatnia H. R., Hehl A. B., et al. (2016). Rac regulates giardia lamblia encystation by coordinating cyst wall protein trafficking and secretion. PubMed DOI PMC

Krtková J., Xu J., Lalle M., Steele-Ogus M., Alas G. C. M., Sept D., et al. (2017). 14-3-3 regulates actin filament formation in the deep-branching eukaryote giardia lamblia. PubMed DOI PMC

Lane S., Lloyd D. (2002). Current trends in research into the waterborne parasite Giardia. PubMed DOI

Lawson C. D., Ridley A. J. (2018). Rho GTPase signaling complexes in cell migration and invasion. PubMed DOI PMC

Li G., Marlin M. C. (2015). Rab family of GTpases. PubMed DOI PMC

Luján H. D., Mowatt M. R., Byrd L. G., Nash T. E. (1996). Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia. PubMed DOI PMC

Lujan H. D., Mowatt M. R., Conrad J. T., Bowers B., Nash T. E. (1995). Identification of a novel Giardia lamblia cyst wall protein with leucine- rich repeats: implications for secretory granule formation and protein assembly into the cyst wall. PubMed DOI

Mani S., Thattai M. (2016). Stacking the odds for golgi cisternal maturation. PubMed DOI PMC

Manser E., Leung T., Salihuddin H., Zhao Z. S., Lim L. (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. PubMed DOI

Marti M., Li Y., Schraner E. M., Wild P., Köhler P., Hehl A. B. (2003). The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. PubMed DOI PMC

Merino M. C., Zamponi N., Vranych C. V., Touz M. C., Rópolo A. S. (2014). Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the encystation process. PubMed DOI PMC

Michaels S. A., Shih H.-W., Zhang B., Navaluna E. D., Zhang Z., Ranade R. M., et al. (2020). Methionyl-tRNA synthetase inhibitor has potent in vivo activity in a novel Giardia lamblia luciferase murine infection model. PubMed DOI PMC

Minamino N., Ueda T. (2019). RAB GTPases and their effectors in plant endosomal transport. PubMed DOI

Paredez A. R., Nayeri A., Xu J. W., Krtková J., Cande W. Z., Zacheus Cande W. (2014). Identification of obscure yet conserved actin-associated proteins in Giardia lamblia. PubMed DOI PMC

Paredez A. R., Assafa Z. J., Sept D., Timofejeva L., Dawsond S. C., Wang C. J. R., et al. (2011). An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. PubMed DOI PMC

Pfeffer S. R. (2017). Rab GTPases: master regulators that establish the secretory and endocytic pathways. PubMed DOI PMC

Pham J. K., Nosala C., Scott E. Y., Nguyen K. F., Hagen K. D., Starcevich H. N., et al. (2017). Transcriptomic profiling of high-density giardia foci encysting in the murine proximal intestine. PubMed DOI PMC

Phuyal S., Farhan H. (2019). Multifaceted Rho GTPase signaling at the endomembranes. PubMed DOI PMC

Reiner D. S., Ankarklev J., Troell K., Palm D., Bernander R., Gillin F. D., et al. (2008). Synchronisation of Giardia lamblia: identification of cell cycle stage-specific genes and a differentiation restriction point. PubMed DOI

Reiner D. S., McCaffery J. M., Gillin F. D. (2001). Reversible interruption of Giardia lamblia cyst wall protein transport in a novel regulated secretory pathway. PubMed DOI

Rivera-Molina F. E., Novick P. J. (2009). A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. PubMed DOI PMC

Saraste J. (2016). Spatial and functional aspects of ER-Golgi rabs and tethers. PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. PubMed DOI PMC

Slavin I., Saura A., Carranza P. G., Touz M. C., Nores M. J., Luján H. D. (2002). Dephosphorylation of cyst wall proteins by a secreted lysosomal acid phosphatase is essential for excystation of Giardia lamblia. PubMed DOI

Srinivasan S., Wang F., Glavas S., Ott A., Hofmann F., Aktories K., et al. (2003). Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. PubMed DOI PMC

Štefanić S., Morf L., Kulangara C., Regös A., Sonda S., Schraner E., et al. (2009). Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. PubMed DOI

Sun C. H., McCaffery J. M., Reiner D. S., Gillin F. D. (2003). Mining the Giardia lamblia genome for new cyst wall proteins. PubMed DOI

Touz M. C., Nores M. J., Slavin I., Carmona C., Conrad J. T., Mowatt M. R., et al. (2002). The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. PubMed DOI

Touz M. C., Zamponi N. (2017). Sorting without a Golgi complex. PubMed DOI

Vernoud V., Horton A. C., Yang Z., Nielsen E. (2003). Analysis of the small GTPase gene superfamily of arabidopsis. PubMed DOI PMC

Vranych C. V., Rivero M. R., Merino M. C., Mayol G. F., Zamponi N., Maletto B. A., et al. (2014). SUMOylation and deimination of proteins: two epigenetic modifications involved in Giardia encystation. PubMed DOI

Wiśniewski J. R., Zougman A., Nagaraj N., Mann M. (2009). Universal sample preparation method for proteome analysis. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...