Staging Encystation Progression in Giardia lamblia Using Encystation-Specific Vesicle Morphology and Associating Molecular Markers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P41 GM103533
NIGMS NIH HHS - United States
R01 AI110708
NIAID NIH HHS - United States
PubMed
33987184
PubMed Central
PMC8111296
DOI
10.3389/fcell.2021.662945
Knihovny.cz E-zdroje
- Klíčová slova
- ESV, Giardia, Rac, Rho GTPase, encystation, membrane trafficking,
- Publikační typ
- časopisecké články MeSH
Differentiation into environmentally resistant cysts is required for transmission of the ubiquitous intestinal parasite Giardia lamblia. Encystation in Giardia requires the production, processing and transport of Cyst Wall Proteins (CWPs) in developmentally induced, Golgi-like, Encystation Specific Vesicles (ESVs). Progress through this trafficking pathway can be followed by tracking CWP localization over time. However, there is no recognized system to distinguish the advancing stages of this process which can complete at variable rates depending on how encystation is induced. Here, we propose a staging system for encysting Giardia based on the morphology of CWP1-stained ESVs. We demonstrate the molecular distinctiveness of maturing ESVs at these stages by following GlRab GTPases through encystation. Previously, we established that Giardia's sole Rho family GTPase, GlRac, associates with ESVs and has a role in regulating their maturation and the secretion of their cargo. As a proof of principle, we delineate the relationship between GlRac and ESV stages. Through proteomic studies, we identify putative interactors of GlRac that could be used as additional ESV stage markers. This staging system provides a common descriptor of ESV maturation regardless of the source of encysting cells. Furthermore, the identified set of molecular markers for ESV stages will be a powerful tool for characterizing trafficking mutants that impair ESV maturation and morphology.
Department of Biology University of Washington Seattle WA United States
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Department of Genome Sciences University of Washington Seattle WA United States
Zobrazit více v PubMed
Bolte S., Cordelières F. P. (2006). A guided tour into subcellular colocalization analysis in light microscopy. PubMed DOI
Boucher S. E. M., Gillin F. D. (1990). Excystation of in vitro-derived Giardia lamblia cysts. PubMed DOI PMC
Chatterjee A., Carpentieri A., Ratner D. M., Bullitt E., Costello C. E., Robbins P. W., et al. (2010). Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GaINAc homopolymer. PubMed DOI PMC
Davids B. J., Mehta K., Fesus L., McCaffery J. M., Gillin F. D. (2004). Dependence of Giardia lamblia encystation on novel transglutaminase activity. PubMed DOI
DuBois K. N., Abodeely M., Sakanari J., Craik C. S., Lee M., McKerrow J. H., et al. (2008). Identification of the major cysteine protease of Giardia and its role in encystation. PubMed DOI PMC
Eichinger D. (2001). Encystation in parasitic protozoa. PubMed DOI
Einarsson E., Troell K., Hoeppner M. P., Grabherr M., Ribacke U., Svärd S. G. (2016). Coordinated changes in gene expression throughout encystation of giardia intestinalis. PubMed DOI PMC
Eng J. K., Jahan T. A., Hoopmann M. R. (2013). Comet: an open-source MS/MS sequence database search tool. PubMed DOI
Faso C., Konrad C., Schraner E. M., Hehl A. B. (2013). Export of cyst wall material and golgi organelle neogenesis in giardia lamblia depend on endoplasmic reticulum exit sites. PubMed DOI
Frontera L. S., Moyano S., Quassollo G., Lanfredi-Rangel A., Rópolo A. S., Touz M. C. (2018). Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. PubMed DOI PMC
Gerwig G. J., Van Albert Kuik J., Leeflang B. R., Kamerling J. P., Vliegenthart J. F. G., Karr C. D., et al. (2002). The Giardia intestinal filamentous cyst wall contains a novel β(1-3)-N-acetyl-D-galactosamine polymer: a structural and conformational study. PubMed DOI
Gibson D. G., Young L., Chuang R.-Y., Venter J. C., Hutchison C. A., Smith H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. PubMed DOI
Gourguechon S., Cande W. Z. (2011). Rapid tagging and integration of genes in Giardia intestinalis. PubMed DOI PMC
Hardin W. R., M Alas G. C., Taparia N., Thomas E. B., Hvorecny K. L., Halpern A. R., et al. (2021). The Giardia lamellipodium-like ventrolateral flange supports attachment and rapid cytokinesis. DOI
Hehl A. B., Marti M., Köhler P. (2000). Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia. PubMed DOI PMC
Hodge R. G., Ridley A. J. (2016). Regulating Rho GTPases and their regulators. PubMed DOI
Ioannou M. S., McPherson P. S. (2016). Regulation of cancer cell behavior by the small GTPase Rab13. PubMed DOI PMC
Käll L., Canterbury J. D., Weston J., Noble W. S., MacCoss M. J. (2007). Semi-supervised learning for peptide identification from shotgun proteomics datasets. PubMed DOI
Konrad C., Spycher C., Hehl A. B. (2010). Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PubMed DOI PMC
Krtková J., Thomas E. B., Alas G. C. M., Schraner E. M., Behjatnia H. R., Hehl A. B., et al. (2016). Rac regulates giardia lamblia encystation by coordinating cyst wall protein trafficking and secretion. PubMed DOI PMC
Krtková J., Xu J., Lalle M., Steele-Ogus M., Alas G. C. M., Sept D., et al. (2017). 14-3-3 regulates actin filament formation in the deep-branching eukaryote giardia lamblia. PubMed DOI PMC
Lane S., Lloyd D. (2002). Current trends in research into the waterborne parasite Giardia. PubMed DOI
Lawson C. D., Ridley A. J. (2018). Rho GTPase signaling complexes in cell migration and invasion. PubMed DOI PMC
Li G., Marlin M. C. (2015). Rab family of GTpases. PubMed DOI PMC
Luján H. D., Mowatt M. R., Byrd L. G., Nash T. E. (1996). Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia. PubMed DOI PMC
Lujan H. D., Mowatt M. R., Conrad J. T., Bowers B., Nash T. E. (1995). Identification of a novel Giardia lamblia cyst wall protein with leucine- rich repeats: implications for secretory granule formation and protein assembly into the cyst wall. PubMed DOI
Mani S., Thattai M. (2016). Stacking the odds for golgi cisternal maturation. PubMed DOI PMC
Manser E., Leung T., Salihuddin H., Zhao Z. S., Lim L. (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. PubMed DOI
Marti M., Li Y., Schraner E. M., Wild P., Köhler P., Hehl A. B. (2003). The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. PubMed DOI PMC
Merino M. C., Zamponi N., Vranych C. V., Touz M. C., Rópolo A. S. (2014). Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the encystation process. PubMed DOI PMC
Michaels S. A., Shih H.-W., Zhang B., Navaluna E. D., Zhang Z., Ranade R. M., et al. (2020). Methionyl-tRNA synthetase inhibitor has potent in vivo activity in a novel Giardia lamblia luciferase murine infection model. PubMed DOI PMC
Minamino N., Ueda T. (2019). RAB GTPases and their effectors in plant endosomal transport. PubMed DOI
Paredez A. R., Nayeri A., Xu J. W., Krtková J., Cande W. Z., Zacheus Cande W. (2014). Identification of obscure yet conserved actin-associated proteins in Giardia lamblia. PubMed DOI PMC
Paredez A. R., Assafa Z. J., Sept D., Timofejeva L., Dawsond S. C., Wang C. J. R., et al. (2011). An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. PubMed DOI PMC
Pfeffer S. R. (2017). Rab GTPases: master regulators that establish the secretory and endocytic pathways. PubMed DOI PMC
Pham J. K., Nosala C., Scott E. Y., Nguyen K. F., Hagen K. D., Starcevich H. N., et al. (2017). Transcriptomic profiling of high-density giardia foci encysting in the murine proximal intestine. PubMed DOI PMC
Phuyal S., Farhan H. (2019). Multifaceted Rho GTPase signaling at the endomembranes. PubMed DOI PMC
Reiner D. S., Ankarklev J., Troell K., Palm D., Bernander R., Gillin F. D., et al. (2008). Synchronisation of Giardia lamblia: identification of cell cycle stage-specific genes and a differentiation restriction point. PubMed DOI
Reiner D. S., McCaffery J. M., Gillin F. D. (2001). Reversible interruption of Giardia lamblia cyst wall protein transport in a novel regulated secretory pathway. PubMed DOI
Rivera-Molina F. E., Novick P. J. (2009). A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. PubMed DOI PMC
Saraste J. (2016). Spatial and functional aspects of ER-Golgi rabs and tethers. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. PubMed DOI PMC
Slavin I., Saura A., Carranza P. G., Touz M. C., Nores M. J., Luján H. D. (2002). Dephosphorylation of cyst wall proteins by a secreted lysosomal acid phosphatase is essential for excystation of Giardia lamblia. PubMed DOI
Srinivasan S., Wang F., Glavas S., Ott A., Hofmann F., Aktories K., et al. (2003). Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. PubMed DOI PMC
Štefanić S., Morf L., Kulangara C., Regös A., Sonda S., Schraner E., et al. (2009). Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. PubMed DOI
Sun C. H., McCaffery J. M., Reiner D. S., Gillin F. D. (2003). Mining the Giardia lamblia genome for new cyst wall proteins. PubMed DOI
Touz M. C., Nores M. J., Slavin I., Carmona C., Conrad J. T., Mowatt M. R., et al. (2002). The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. PubMed DOI
Touz M. C., Zamponi N. (2017). Sorting without a Golgi complex. PubMed DOI
Vernoud V., Horton A. C., Yang Z., Nielsen E. (2003). Analysis of the small GTPase gene superfamily of arabidopsis. PubMed DOI PMC
Vranych C. V., Rivero M. R., Merino M. C., Mayol G. F., Zamponi N., Maletto B. A., et al. (2014). SUMOylation and deimination of proteins: two epigenetic modifications involved in Giardia encystation. PubMed DOI
Wiśniewski J. R., Zougman A., Nagaraj N., Mann M. (2009). Universal sample preparation method for proteome analysis. PubMed DOI
The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment