Rac Regulates Giardia lamblia Encystation by Coordinating Cyst Wall Protein Trafficking and Secretion
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R01 AI110708
NIAID NIH HHS - United States
PubMed
27555307
PubMed Central
PMC4999545
DOI
10.1128/mbio.01003-16
PII: mBio.01003-16
Knihovny.cz E-zdroje
- MeSH
- Giardia lamblia genetika růst a vývoj MeSH
- protozoální proteiny metabolismus MeSH
- rac proteiny vázající GTP metabolismus MeSH
- regulace genové exprese * MeSH
- spory protozoální genetika růst a vývoj MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- protozoální proteiny MeSH
- rac proteiny vázající GTP MeSH
UNLABELLED: Encystation of the common intestinal parasite Giardia lamblia involves the production, trafficking, and secretion of cyst wall material (CWM). However, the molecular mechanism responsible for the regulation of these sequential processes remains elusive. Here, we examined the role of GlRac, Giardia's sole Rho family GTPase, in the regulation of endomembrane organization and cyst wall protein (CWP) trafficking. Localization studies indicated that GlRac is associated with the endoplasmic reticulum (ER) and the Golgi apparatus-like encystation-specific vesicles (ESVs). Constitutive GlRac signaling increased levels of the ER marker PDI2, induced ER swelling, reduced overall CWP1 production, and promoted the early maturation of ESVs. Quantitative analysis of cells expressing constitutively active hemagglutinin (HA)-tagged GlRac (HA-Rac(CA)) revealed fewer but larger ESVs than control cells. Consistent with the phenotype of premature maturation of ESVs in HA-Rac(CA)-expressing cells, constitutive GlRac signaling resulted in increased CWP1 secretion and, conversely, morpholino depletion of GlRac blocked CWP1 secretion. Wild-type cells unexpectedly secreted large quantities of CWP1 into the medium, and free CWP1 was used cooperatively during cyst formation. These results, in part, could account for the previously reported observation that G. lamblia encysts more efficiently at high cell densities. These studies of GlRac show that it regulates encystation at several levels, and our findings support its coordinating role as a regulator of CWP trafficking and secretion. The central role of GlRac in regulating membrane trafficking and the cytoskeleton, both of which are essential to Giardia parasitism, further suggests its potential as a novel target for drug development to treat giardiasis. IMPORTANCE: The encystation process is crucial for the transmission of giardiasis and the life cycle of many protists. Encystation for Giardia lamblia involves the assembly of a protective cyst wall via sequential production, trafficking, and secretion of cyst wall material. However, the regulatory pathways that coordinate cargo maturation and secretion remain unknown. Here, we asked whether the signaling activities of G. lamblia's single Rho family GTPase, GlRac, might have a regulatory role in the encystation process. We show that GlRac localizes to endomembranes and its signaling activities regulate the production of cyst wall protein 1 (CWP1), the maturation of encystation-specific vesicles (ESVs), and secretion of CWP1. We also show that secreted CWP1 is available for the development of cysts at the population level, a finding that in part could explain why Giardia encystation proceeds more efficiently at high cell densities.
Department of Biology University of Washington Seattle Washington USA
Institute of Parasitology University of Zurich Zürich Switzerland
Institutes of Veterinary Anatomy and Virology University of Zurich Zürich Switzerland
Zobrazit více v PubMed
Lane S, Lloyd D. 2002. Current trends in research into the waterborne parasite Giardia. Crit Rev Microbiol 28:123–147. doi:10.1080/1040-840291046713. PubMed DOI
Baldursson S, Karanis P. 2011. Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2004–2010. Water Res 45:6603–6614. PubMed
Savioli L, Smith H, Thompson A. 2006. Giardia and Cryptosporidium join the “Neglected Diseases Initiative.” Trends Parasitol 22:203–208. doi:10.1016/j.pt.2006.02.015. PubMed DOI
Gillin FD, Reiner DS, Boucher SE. 1988. Small-intestinal factors promote encystation of Giardia lamblia in vitro. Infect Immun 56:705–707. PubMed PMC
Gillin FD, Reiner DS, Gault MJ, Douglas H, Das S, Wunderlich A, Sauch JF. 1987. Encystation and expression of cyst antigens by Giardia lamblia in vitro. Science 235:1040–1043. doi:10.1126/science.3547646. PubMed DOI
Einarsson E, Svärd SG. 2015. Encystation of Giardia intestinalis—a journey from the duodenum to the colon. Curr Trop Med Rep 2:101–109. doi:10.1007/s40475-015-0048-9. DOI
Eichinger D. 2001. Encystation in parasitic protozoa. Curr Opin Microbiol 4:421–426. doi:10.1016/S1369-5274(00)00229-0. PubMed DOI
Einarsson E, Troell K, Hoeppner MP, Grabherr M, Ribacke U, Svärd SG. 2016. Coordinated changes in gene expression throughout encystation of Giardia intestinalis. PLoS Negl Trop Dis 10:e01003-16. doi:10.1371/journal.pntd.0004571. PubMed DOI PMC
Konrad C, Spycher C, Hehl AB. 2010. Selective condensation drives partitioning and sequential secretion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog 6:e01003-16. doi:10.1371/journal.ppat.1000835. PubMed DOI PMC
Faso C, Konrad C, Schraner EM, Hehl AB. 2013. Export of cyst wall material and Golgi organelle neogenesis in Giardia lamblia depend on endoplasmic reticulum exit sites. Cell Microbiol 15:537–553. doi:10.1111/cmi.12054. PubMed DOI
Gillin FD, Reiner DS, McCaffery JM. 1996. Cell biology of the primitive eukaryote Giardia lamblia. Annu Rev Microbiol 50:679–705. doi:10.1146/annurev.micro.50.1.679. PubMed DOI
Jarroll EL, Macechko PT, Steimle PA, Bulik D, Karr CD, van Keulen H, Paget TA, Gerwig G, Kamerling J, Vliegenthart J, Erlandsen S. 2001. Regulation of carbohydrate metabolism during Giardia encystment. J Eukaryot Microbiol 48:22–26. doi:10.1111/j.1550-7408.2001.tb00412.x. PubMed DOI
Luján HD, Marotta A, Mowatt MR, Sciaky N, Lippincott-Schwartz J, Nash TE. 1995. Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J Biol Chem 270:4612–4618. doi:10.1074/jbc.270.9.4612. PubMed DOI
Sun CH, McCaffery JM, Reiner DS, Gillin FD. 2003. Mining the Giardia lamblia genome for new cyst wall proteins. J Biol Chem 278:21701–21708. doi:10.1074/jbc.M302023200. PubMed DOI
Marti M, Li Y, Schraner EM, Wild P, Köhler P, Hehl AB. 2003. The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Mol Biol Cell 14:1433–1447. doi:10.1091/mbc.E02-08-0467. PubMed DOI PMC
Stefanic S, Morf L, Kulangara C, Regös A, Sonda S, Schraner E, Spycher C, Wild P, Hehl AB. 2009. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci 122:2846–2856. doi:10.1242/jcs.049411. PubMed DOI
Slavin I, Saura A, Carranza PG, Touz MC, Nores MJ, Luján HD. 2002. Dephosphorylation of cyst wall proteins by a secreted lysosomal acid phosphatase is essential for excystation of Giardia lamblia. Mol Biochem Parasitol 122:95–98. doi:10.1016/S0166-6851(02)00065-8. PubMed DOI
Davids BJ, Mehta K, Fesus L, McCaffery JM, Gillin FD. 2004. Dependence of Giardia lamblia encystation on novel transglutaminase activity. Mol Biochem Parasitol 136:173–180. doi:10.1016/j.molbiopara.2004.03.011. PubMed DOI
Reiner DS, McCaffery JM, Gillin FD. 2001. Reversible interruption of Giardia lamblia cyst wall protein transport in a novel regulated secretory pathway. Cell Microbiol 3:459–472. doi:10.1046/j.1462-5822.2001.00129.x. PubMed DOI
DuBois KN, Abodeely M, Sakanari J, Craik CS, Lee M, McKerrow JH, Sajid M. 2008. Identification of the major cysteine protease of Giardia and its role in encystation. J Biol Chem 283:18024–18031. doi:10.1074/jbc.M802133200. PubMed DOI PMC
Touz MC, Nores MJ, Slavin I, Carmona C, Conrad JT, Mowatt MR, Nash TE, Coronel CE, Luján HD. 2002. The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. J Biol Chem 277:8474–8481. doi:10.1074/jbc.M110250200. PubMed DOI
Chatterjee A, Carpentieri A, Ratner DM, Bullitt E, Costello CE, Robbins PW, Samuelson J. 2010. Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GalNac homopolymer. PLoS Pathog 6:e01003-16. doi:10.1371/journal.ppat.1001059. PubMed DOI PMC
Midlej V, Meinig I, de Souza W, Benchimol M. 2013. A new set of carbohydrate-positive vesicles in encysting Giardia lamblia. Protist 164:261–271. doi:10.1016/j.protis.2012.11.001. PubMed DOI
Etienne-Manneville S, Hall A. 2002. Rho GTPases in cell biology. Nature 420:629–635. doi:10.1038/nature01148. PubMed DOI
Hehnly H, Stamnes M. 2007. Regulating cytoskeleton-based vesicle motility. FEBS Lett 581:2112–2118. doi:10.1016/j.febslet.2007.01.094. PubMed DOI PMC
Komuro R, Sasaki T, Takaishi K, Orita S, Takai Y. 1996. Involvement of Rho and Rac small G proteins and Rho Gdi in Ca2+-dependent exocytosis from Pc12 cells. Genes Cells 1:943–951. doi:10.1046/j.1365-2443.1996.760276.x. PubMed DOI
Kost B. 2008. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol 18:119–127. doi:10.1016/j.tcb.2008.01.003. PubMed DOI
Price LS, Norman JC, Ridley AJ, Koffer A. 1995. The small GTPases Rac and Rho as regulators of secretion in mast cells. Curr Biol 5:68–73. doi:10.1016/S0960-9822(95)00018-2. PubMed DOI
Brembu T, Winge P, Bones AM, Yang Z. 2006. A Rhose by any other name: a comparative analysis of animal and plant Rho GTPases. Cell Res 16:435–445. doi:10.1038/sj.cr.7310055. PubMed DOI
Jékely G. 2003. Small GTPases and the evolution of the eukaryotic cell. Bioessays 25:1129–1138. doi:10.1002/bies.10353. PubMed DOI
Paredez AR, Assaf ZJ, Sept D, Timofejeva L, Dawson SC, Wang CJ, Cande WZ. 2011. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins. Proc Natl Acad Sci U S A 108:6151–6156. doi:10.1073/pnas.1018593108. PubMed DOI PMC
Boureux A, Vignal E, Faure S, Fort P. 2007. Evolution of the Rho family of Ras-like GTPases in eukaryotes. Mol Biol Evol 24:203–216. doi:10.1093/molbev/msl145. PubMed DOI PMC
Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287. doi:10.1126/science.1123061. PubMed DOI
He D, Fiz-Palacios O, Fu CJ, Fehling J, Tsai CC, Baldauf SL. 2014. An alternative root for the eukaryote tree of life. Curr Biol 24:465–470. doi:10.1016/j.cub.2014.01.036. PubMed DOI
Keeling PJ. 2007. Genomics: deep questions in the tree of life. Science 317:1875–1876. doi:10.1126/science.1149593. PubMed DOI
Abodeely M, DuBois KN, Hehl A, Stefanic S, Sajid M, deSouza W, Attias M, Engel JC, Hsieh I, Fetter RD, McKerrow JH. 2009. A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell 8:1665–1676. doi:10.1128/EC.00123-09. PubMed DOI PMC
Birkeland SR, Preheim SP, Davids BJ, Cipriano MJ, Palm D, Reiner DS, Svärd SG, Gillin FD, McArthur AG. 2010. Transcriptome analyses of the Giardia lamblia life cycle. Mol Biochem Parasitol 174:62–65. doi:10.1016/j.molbiopara.2010.05.010. PubMed DOI PMC
Castillo-Romero A, Leon-Avila G, Perez Rangel A, Cortes Zarate R, Garcia Tovar C, Hernandez JM. 2009. Participation of actin on Giardia lamblia growth and encystation. PLoS One 4:e01003-16. doi:10.1371/journal.pone.0007156. PubMed DOI PMC
Rossman KL, Der CJ, Sondek J. 2005. Gef means go: turning on Rho GTPases with guanine nucleotide exchange factors. Nat Rev Mol Cell Biol 6:167–180. doi:10.1038/nrm1587. PubMed DOI
Urano F, Calfon M, Yoneda T, Yun C, Kiraly M, Clark SG, Ron D. 2002. A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J Cell Biol 158:639–646. doi:10.1083/jcb.200203086. PubMed DOI PMC
Carpenter ML, Cande WZ. 2009. Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryot Cell 8:916–919. doi:10.1128/EC.00041-09. PubMed DOI PMC
Paredez AR, Nayeri A, Xu JW, Krtková J, Cande WZ. 2014. Identification of obscure yet conserved actin associated proteins in Giardia lamblia. Eukaryot Cell 13:776–784. doi:10.1128/EC.00041-14. PubMed DOI PMC
Zhang C, Kotchoni SO, Samuels AL, Szymanski DB. 2010. Spike1 signals originate from and assemble specialized domains of the endoplasmic reticulum. Curr Biol 20:2144–2149. doi:10.1016/j.cub.2010.11.016. PubMed DOI
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ. 2009. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.” Proc Natl Acad Sci U S A 106:3859–3864. doi:10.1073/pnas.0807880106. PubMed DOI PMC
Samuelson J, Robbins P. 2011. A simple fibril and lectin model for cyst walls of Entamoeba and perhaps Giardia. Trends Parasitol 27:17–22. doi:10.1016/j.pt.2010.09.002. PubMed DOI PMC
McCaffery JM, Gillin FD. 1994. Giardia-lamblia—ultrastructural basis of protein-transport during growth and encystation. Exp Parasitol 79:220–235. doi:10.1006/expr.1994.1086. PubMed DOI
Myers KR, Casanova JE. 2008. Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol 18:184–192. doi:10.1016/j.tcb.2008.02.002. PubMed DOI PMC
Yang Z. 2008. Cell polarity signaling in Arabidopsis, p 551–575. In Annual review of cell and developmental biology, vol. 24 Annual Reviews, Palo Alto, CA. PubMed PMC
Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. 2004. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A 101:7618–7623. doi:10.1073/pnas.0307512101. PubMed DOI PMC
Nassar N, Cancelas J, Zheng J, Williams DA, Zheng Y. 2006. Structure-function based design of small molecule inhibitors targeting Rho family GTPases. Curr Top Med Chem 6:1109–1116. doi:10.2174/156802606777812095. PubMed DOI
Aznar S, Lacal JC. 2001. Searching new targets for anticancer drug design: the families of Ras and Rho GTPases and their effectors. Prog Nucleic Acid Res Mol Biol 67:193–234. doi:10.1016/S0079-6603(01)67029-6. PubMed DOI
Sagolla MS, Dawson SC, Mancuso JJ, Cande WZ. 2006. Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J Cell Sci 119:4889–4900. doi:10.1242/jcs.03276. PubMed DOI
Morf L, Spycher C, Rehrauer H, Fournier CA, Morrison HG, Hehl AB. 2010. The transcriptional response to encystation stimuli in Giardia lamblia is restricted to a small set of genes. Eukaryot Cell 9:1566–1576. doi:10.1128/EC.00100-10. PubMed DOI PMC
Kane AV, Ward HD, Keusch GT, Pereira ME. 1991. In vitro encystation of Giardia lamblia: large-scale production of in vitro cysts and strain and clone differences in encystation efficiency. J Parasitol 77:974–981. doi:10.2307/3282752. PubMed DOI
Roxström-Lindquist K, Ringqvist E, Palm D, Svärd S. 2005. Giardia lamblia-induced changes in gene expression in differentiated Caco-2 human intestinal epithelial cells. Infect Immun 73:8204–8208. doi:10.1128/IAI.73.12.8204-8208.2005. PubMed DOI PMC
Faso C, Hehl AB. 2011. Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it. Int J Parasitol 41:471–480. doi:10.1016/j.ijpara.2010.12.014. PubMed DOI
Schneider CA, Rasband WS, Eliceiri KW. 2012. Nih image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089. PubMed DOI PMC
The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment
Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis