Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27932998
PubMed Central
PMC5121236
DOI
10.3389/fphys.2016.00574
Knihovny.cz E-zdroje
- Klíčová slova
- caste differentiation, diapause, endocrine glands, hormones, reproduction, social evolution, social insects,
- Publikační typ
- časopisecké články MeSH
Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause. In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen's transition from solitary to social life. We focused on fundamental genes of three pathways: (1) Forkhead box protein O and insulin/insulin-like signaling, (2) Juvenile hormone (JH) signaling, and (3) Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE) and transcription factor Krüppel homolog 1 (Kr-h1). Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg) expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1) turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.
Zobrazit více v PubMed
Albert S., Spaethe J., Grübel K., Rössler W. (2014). Royal jelly-like protein localization reveals differences in hypopharyngeal glands buildup and conserved expression pattern in brains of bumblebees and honeybees. Biol. Open 3, 281–288. 10.1242/bio.20147211 PubMed DOI PMC
Amdam G. V., Omholt S. W. (2002). The regulatory anatomy of honeybee lifespan. J. Theor. Biol. 216, 209–228. 10.1006/jtbi.2002.2545 PubMed DOI
Amdam G. V., Simões Z. L., Hagen A., Norberg K., Schrøder K., Mikkelsen Ø., et al. . (2004). Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp. Gerontol. 39, 767–773. 10.1016/j.exger.2004.02.010 PubMed DOI
Ament S. A., Corona M., Pollock H. S., Robinson G. E. (2008). Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. U.S.A. 105, 4226–4231. 10.1073/pnas.0800630105 PubMed DOI PMC
Amsalem E., Galbraith D. A., Cnaani J., Teal P. E., Grozinger C. M. (2015b). Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens. Mol. Ecol. 24, 5596–5615. 10.1111/mec.13410 PubMed DOI
Amsalem E., Grozinger C. M., Padilla M., Hefetz A. (2015a). The physiological and genomic bases of bumble bee social behaviour, in Advances in Insect Physiology, eds Amro Z., Clement F. K.(London: Academic Press; ), 37–93.
Amsalem E., Malka O., Grozinger C., Hefetz A. (2014). Exploring the role of juvenile hormone and vitellogenin in reproduction and social behavior in bumble bees. BMC Evol. Biol. 14:45. 10.1186/1471-2148-14-45 PubMed DOI PMC
Andersen C. L., Jensen J. L., Øntoft T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250. 10.1158/0008-5472.CAN-04-0496 PubMed DOI
Antonova Y., Arik A. J., Moore W., Riehle M. A., Brown M. R. (2012). Insulin-like peptides: structure, signaling, and function, in Insect Endocrinology, ed Gilbert L. I.(San Diego, CA: Academic Press; ), 63–92.
Arrese E. L., Soulages J. L. (2010). Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225. 10.1146/annurev-ento-112408-085356 PubMed DOI PMC
Badisco L., Claeys I., Van Hiel M., Clynen E., Huybrechts J., Vandersmissen T., et al. . (2008). Purification and characterization of an insulin-related peptide in the desert locust, Schistocerca gregaria: immunolocalization, cDNA cloning, transcript profiling and interaction with neuroparsin. J. Mol. Endocrinol. 40, 137–150. 10.1677/JME-07-0161 PubMed DOI
Badisco L., Van Wielendaele P., Vanden Broeck J. (2013). Eat to reproduce: a key role for the insulin signaling pathway in adult insects. Front. Physiol. 4:202. 10.3389/fphys.2013.00202 PubMed DOI PMC
Bajgar A., Jindra M., Dolezel D. (2013). Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc. Natl. Acad. Sci. U.S.A. 110, 4416–4421. 10.1073/pnas.1217060110 PubMed DOI PMC
Barchuk A. R., Bitondi M. M., Simões Z. L. (2002). Effects of juvenile hormone and ecdysone on the timing of vitellogenin appearance in hemolymph of queen and worker pupae of Apis mellifera. J. Insect Sci. 2:1. 10.1672/1536-2442(2002)002[0001:mfmicc]2.0.co;2 PubMed DOI PMC
Beenakkers A. M. T., Van der Horst D. J., Van Marrewijk W. J. A. (1984). Insect flight muscle metabolism. Insect Biochem. 14, 243–260. 10.1016/0020-1790(84)90057-X DOI
Bellés X., Martín D., Piulachs M.-D. (2005). The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu. Rev. Entomol. 50, 181–199. 10.1146/annurev.ento.50.071803.130356 PubMed DOI
Bloch G., Borst D. W., Huang Z., Robinson G. E., Cnaani J., Hefetz A. (2000). Juvenile hormone titers, juvenile hormone biosynthesis, ovarian development and social environment in Bombus terrestris. J. Insect Physiol. 46, 47–57. 10.1016/S0022-1910(99)00101-8 PubMed DOI
Bodláková K., Jedlička P., Kodrík D. (2016). Adipokinetic hormones control amylase activity in the cockroach (Periplaneta americana) gut. Insect Sci.. [Epub ahead of print]. 10.1111/1744-7917.12314 PubMed DOI
Bomtorin A. D., Mackert A., Rosa G. C., Moda L. M., Martins J. R., Bitondi M. M., et al. . (2014). Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes. PLoS ONE 9:e86923. 10.1371/journal.pone.0086923 PubMed DOI PMC
Brogiolo W., Stocker H., Ikeya T., Rintelen F., Fernandez R., Hafen E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213–221. 10.1016/S0960-9822(01)00068-9 PubMed DOI
Colgan T. J., Carolan J. C., Bridgett S. J., Sumner S., Blaxter M. L., Brown M. J. (2011). Polyphenism in social insects: insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris. BMC Genom. 12:623. 10.1186/1471-2164-12-623 PubMed DOI PMC
Colonello-Frattini N. A., Guidugli-Lazzarini K. R., Simões Z. L., Hartfelder K. (2010). Mars is close to venus – Female reproductive proteins are expressed in the fat body and reproductive tract of honey bee (Apis mellifera L.) drones. J. Insect Physiol. 56, 1638–1644. 10.1016/j.jinsphys.2010.06.008 PubMed DOI
Corona M., Libbrecht R., Wurm Y., Riba-Grognuz O., Studer R. A., Keller L. (2013). Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLoS Genet. 9:e1003730. 10.1371/journal.pgen.1003730 PubMed DOI PMC
Corona M., Velarde R. A., Remolina S., Moran-Lauter A., Wang Y., Hughes K. A., et al. . (2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. U.S.A. 104, 7128–7133. 10.1073/pnas.0701909104 PubMed DOI PMC
Daimon T., Shinoda T. (2013). Function, diversity, and application of insect juvenile hormone epoxidases (CYP15). Biotechnol. Appl. Biochem. 60, 82–91. 10.1002/bab.1058 PubMed DOI
Dallacqua R. P., Simões Z. L. P., Bitondi M. M. G. (2007). Vitellogenin gene expression in stingless bee workers differing in egg-laying behavior. Insectes Soc. 54, 70–76. 10.1007/s00040-007-0913-1 DOI
de Azevedo S. V., Hartfelder K. (2008). The insulin signaling pathway in honey bee (Apis mellifera) caste development — differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. J. Insect Physiol. 54, 1064–1071. 10.1016/j.jinsphys.2008.04.009 PubMed DOI
De Loof A., Boerjan B., Ernst U. R., Schoofs L. (2013). The mode of action of juvenile hormone and ecdysone: towards an epi-endocrinological paradigm? Gen. Comp. Endocrinol. 188, 35–45. 10.1016/j.ygcen.2013.02.004 PubMed DOI
Duchateau M. J., Velthuis H. H. W. (1988). Development and reproductive strategies in Bombus terrestris colonies. Behaviour 107, 186–207. 10.1163/156853988X00340 DOI
Duchateau M. J., Velthuis H. H. W. (1989). Ovarian development and egg laying in workers of Bombus terrestris. Entomol. Exp. Appl. 51, 199–213. 10.1111/j.1570-7458.1989.tb01231.x DOI
Gäde G. (2009). Peptides of the adipokinetic hormone/red pigment-concentrating hormone family. Ann. N. Y. Acad. Sci. 1163, 125–136. 10.1111/j.1749-6632.2008.03625.x PubMed DOI
Gäde G., Auerswald L. (2003). Mode of action of neuropeptides from the adipokinetic hormone family. Gen. Comp. Endocrinol. 132, 10–20. 10.1016/S0016-6480(03)00159-X PubMed DOI
Goodman W. G., Cusson M. (2012). The juvenile hormones, in Insect Endocrinology, ed Gilbert L. I.(Elsevier; ), 310–365.
Goulson D. (2010). Bumblebees: Behaviour, Ecology, and Conservation. Oxford: Oxford University Press.
Guidugli K. R., Nascimento A. M., Amdam G. V., Barchuk A. R., Omholt S., Simões Z. L. P., et al. . (2005a). Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect. FEBS Lett. 579, 4961–4965. 10.1016/j.febslet.2005.07.085 PubMed DOI
Guidugli K. R., Piulachs M.-D., Bellés X., Lourenço A. P., Simões Z. L. P. (2005b). Vitellogenin expression in queen ovaries and in larvae of both sexes of Apis mellifera. Arch. Insect Biochem. Physiol. 59, 211–218. 10.1002/arch.20061 PubMed DOI
Hamilton W. D. (1963). The evolution of altruistic behavior. Am. Nat. 97, 354–356.
Harrison M. C., Hammond R. L., Mallon E. B. (2015). Reproductive workers show queenlike gene expression in an intermediately eusocial insect, the buff-tailed bumble bee Bombus terrestris. Mol. Ecol. 24, 3043–3063. 10.1111/mec.13215 PubMed DOI
Hartfelder K., Emlen D. J. (2012). Endocrine control of insect polyphenism, in Insect Endocrinology, ed Gilbert L. I.(San Diego, CA: Academic Press; ), 464–522.
Havukainen H., Münch D., Baumann A., Zhong S., Halskau Ø., Krogsgaard M., et al. . (2013). Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen species. J. Biol. Chem. 288, 28369–28381. 10.1074/jbc.M113.465021 PubMed DOI PMC
Hornáková D., Matoušková P., Kindl J., Valterová I., Pichová I. (2010). Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Anal. Biochem. 397, 118–120. 10.1016/j.ab.2009.09.019 PubMed DOI
Hunt J. H., Amdam G. V. (2005). Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes. Science 308, 264–267. 10.1126/science.1109724 PubMed DOI PMC
Hunt J. H., Kensinger B. J., Kossuth J. A., Henshaw M. T., Norberg K., Wolschin F., et al. . (2007). A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proc. Natl. Acad. Sci. U.S.A. 104, 14020–14025. 10.1073/pnas.0705660104 PubMed DOI PMC
Jedličková V., Jedlička P., Lee H.-J. (2015). Characterization and expression analysis of adipokinetic hormone and its receptor in eusocial aphid Pseudoregma bambucicola. Gen. Comp. Endocrinol. 223, 38–46. 10.1016/j.ygcen.2015.09.032 PubMed DOI
Jindra M., Palli S. R., Riddiford L. M. (2013). The juvenile hormone signaling pathway in insect development. Annu. Rev. Entomol. 58, 181–204. 10.1146/annurev-ento-120811-153700 PubMed DOI
Kapheim K. M., Pan H., Li C., Salzberg S. L., Puiu D., Magoc T., et al. . (2015). Genomic signatures of evolutionary transitions from solitary to group living. Science 348, 1139–1143. 10.1126/science.aaa4788 PubMed DOI PMC
Kim B.-G., Shim J.-K., Kim D.-W., Kwon Y. J., Lee K.-Y. (2008). Tissue-specific variation of heat shock protein gene expression in relation to diapause in the bumblebee Bombus terrestris. Entomol. Res. 38, 10–16. 10.1111/j.1748-5967.2008.00142.x DOI
Kim S. K., Rulifson E. J. (2004). Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431, 316–320. 10.1038/nature02897 PubMed DOI
Kim Y.-J., Hwang J.-S., Yoon H.-J., Yun E.-Y., Lee S. B., Ahn M.-Y., et al. (2006). Expressed sequence tag analysis of the diapausing queen of the bumblebee Bombus ignitus. Entomol. Res. 36, 191–195. 10.1111/j.1748-5967.2006.00033.x DOI
Kodrík D., Stašková T., Jedličková V., Weyda F., Závodská R., Pflegerová J. (2015). Molecular characterization, tissue distribution, and ultrastructural localization of adipokinetic hormones in the CNS of the firebug Pyrrhocoris apterus (Heteroptera, Insecta). Gen. Comp. Endocrinol. 210, 1–11. 10.1016/j.ygcen.2014.10.014 PubMed DOI
Koyama T., Mendes C. C., Mirth C. K. (2013). Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front. Physiol. 4:263. 10.3389/fphys.2013.00263 PubMed DOI PMC
Kupke J., Spaethe J., Mueller M. J., Rössler W., Albert Š. (2012). Molecular and biochemical characterization of the major royal jelly protein in bumblebees suggest a non-nutritive function. Insect Biochem. Mol. Biol. 42, 647–654. 10.1016/j.ibmb.2012.05.003 PubMed DOI
Li J., Huang J., Cai W., Zhao Z., Peng W., Wu J. (2010). The vitellogenin of the bumblebee, Bombus hypocrita: studies on structural analysis of the cDNA and expression of the mRNA. J. Comp. Physiol. B 180, 161–170. 10.1007/s00360-009-0434-5 PubMed DOI
Libbrecht R., Corona M., Wende F., Azevedo D. O., Serrão J. E., Keller L. (2013). Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proc. Natl. Acad. Sci. U.S.A. 110, 11050–11055. 10.1073/pnas.1221781110 PubMed DOI PMC
Lorenz M. W., Kellner R., Völkl W., Hoffmann K. H., Woodring J. (2001). A comparative study on hypertrehalosaemic hormones in the Hymenoptera: sequence determination, physiological actions and biological significance. J. Insect Physiol. 47, 563–571. 10.1016/S0022-1910(00)00133-5 PubMed DOI
Lorenz M. W., Kellner R., Woodring J., Hoffmann K. H., Gäde G. (1999). Hypertrehalosaemic peptides in the honeybee (Apis mellifera): purification, identification and function. J. Insect Physiol. 45, 647–653. 10.1016/S0022-1910(98)00158-9 PubMed DOI
Lu H. L., Pietrantonio P. V. (2011). Insect insulin receptors: insights from sequence and caste expression analyses of two cloned hymenopteran insulin receptor cDNAs from the fire ant. Insect Mol. Biol. 20, 637–649. 10.1111/j.1365-2583.2011.01094.x PubMed DOI
Madden T. (2003). The BLAST sequence analysis tool, in National Center for Biotechnology Information (Bethesda, MD: ).
Morandin C., Havukainen H., Kulmuni J., Dhaygude K., Trontti K., Helanterä H. (2014). Not only for egg yolk – functional and evolutionary insights from expression, selection, and structural analyses of Formica ant vitellogenins. Mol. Biol. Evol. 31, 2181–2193. 10.1093/molbev/msu171 PubMed DOI
Münch D., Ihle K. E., Salmela H., Amdam G. V. (2015). Vitellogenin in the honey bee brain: atypical localization of a reproductive protein that promotes longevity. Exp. Gerontol. 71, 103–108. 10.1016/j.exger.2015.08.001 PubMed DOI
Mutti N. S., Dolezal A. G., Wolschin F., Mutti J. S., Gill K. S., Amdam G. V. (2011). IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J. Exp. Biol. 214, 3977–3984. 10.1242/jeb.061499 PubMed DOI PMC
Niu D., Zheng H., Corona M., Lu Y., Chen X., Cao L., et al. . (2014). Transcriptome comparison between inactivated and activated ovaries of the honey bee Apis mellifera L. Insect Mol. Biol. 23, 668–681. 10.1111/imb.12114 PubMed DOI
Okamoto N., Yamanaka N., Yagi Y., Nishida Y., Kataoka H., O'Connor M. B., et al. . (2009). A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Dev. Cell 17, 885–891. 10.1016/j.devcel.2009.10.008 PubMed DOI PMC
Pennisi E. (2005). How did cooperative behavior evolve? Science 309:93. 10.1126/science.309.5731.93 PubMed DOI
Pereboom J. J. M. (2000). The composition of larval food and the significance of exocrine secretions in the bumblebee Bombus terrestris. Insectes Soc. 47, 11–20. 10.1007/s000400050003 DOI
Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45. 10.1111/j.1365-2583.2011.0 PubMed DOI PMC
Piulachs M. D., Guidugli K. R., Barchuk A. R., Cruz J., Simões Z. L., Bellés X. (2003). The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies. Insect Biochem. Mol. Biol. 33, 459–465. 10.1016/S0965-1748(03)00021-3 PubMed DOI
Puig O., Tjian R. (2005). Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 19, 2435–2446. 10.1101/gad.1340505 PubMed DOI PMC
R. Development Core Team (2015). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; Available online at: http://www.R-project.org
Reiff T., Jacobson J., Cognigni P., Antonello Z., Ballesta E., Tan K. J., et al. . (2015). Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. eLife 4:e06930. 10.7554/eLife.06930 PubMed DOI PMC
Riddiford L. M. (2012). How does juvenile hormone control insect metamorphosis and reproduction? Gen. Comp. Endocrinol. 179, 477–484. 10.1016/j.ygcen.2012.06.001 PubMed DOI
Robinson G. E., Grozinger C. M., Whitfield C. W. (2005). Sociogenomics: social life in molecular terms. Nat. Rev. Genet. 6, 257–270. 10.1038/nrg1575 PubMed DOI
Roy-Zokan E. M., Cunningham C. B., Hebb L. E., McKinney E. C., Moore A. J. (2015). Vitellogenin and vitellogenin receptor gene expression is associated with male and female parenting in a subsocial insect. Proc. R. Soc. B 282:20150787. 10.1098/rspb.2015.0787 PubMed DOI PMC
Sadd B. M., Barribeau S. M., Bloch G., de Graaf D. C., Dearden P., Elsik C. G., et al. . (2015). The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol. 16, 1–32. 10.1186/s13059-015-0623-3 PubMed DOI PMC
Salmela H., Stark T., Stucki D., Fuchs S., Freitak D., Dey A., et al. . (2016). Ancient duplications have led to functional divergence of vitellogenin-like genes potentially involved in inflammation and oxidative stress in honey bees. Genome Biol. Evol. 8, 495–506. 10.1093/gbe/evw014 PubMed DOI PMC
Sappington T. W., Raikhel A. S. (1998). Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem. Mol. Biol. 28, 277–300. 10.1016/S0965-1748(97)00110-0 PubMed DOI
Seehuus S.-C., Norberg K., Krekling T., Fondrk K., Amdam G. V. (2007). Immunogold localization of vitellogenin in the ovaries, hypopharyngeal glands and head fat bodies of honeybee workers, Apis mellifera. J. Insect Sci. 7, 1–14. 10.1673/031.007.5201 PubMed DOI PMC
Shpigler H. Y., Siegel A. J., Huang Z. Y., Bloch G. (2016). No effect of juvenile hormone on task performance in a bumblebee (Bombus terrestris) supports an evolutionary link between endocrine signaling and social complexity. Horm. Behav. 85, 67–75. 10.1016/j.yhbeh.2016.08.004 PubMed DOI
Shpigler H., Amsalem E., Huang Z. Y., Cohen M., Siegel A. J., Hefetz A., et al. . (2014). Gonadotropic and physiological functions of juvenile hormone in bumblebee (Bombus terrestris) workers. PLoS ONE 9:e100650. 10.1371/journal.pone.0100650 PubMed DOI PMC
Shpigler H., Patch H. M., Cohen M., Fan Y., Grozinger C. M., Bloch G. (2010). The transcription factor Krüppel homolog 1 is linked to hormone mediated social organization in bees. BMC Evol. Biol. 10:120. 10.1186/1471-2148-10-120 PubMed DOI PMC
Sim C., Denlinger D. L. (2013). Insulin signaling and the regulation of insect diapause. Front. Physiol. 4:189. 10.3389/fphys.2013.00189 PubMed DOI PMC
Simola D. F., Wissler L., Donahue G., Waterhouse R. M., Helmkampf M., Roux J., et al. . (2013). Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Res. 23, 1235–1247. 10.1101/gr.155408.113 PubMed DOI PMC
Šobotník J., Kalinová B., Cahlíková L., Weyda F., Ptáček V., Valterová I. (2008). Age-dependent changes in structure and function of the male labial gland in Bombus terrestris. J. Insect Physiol. 54, 204–214. 10.1016/j.jinsphys.2007.09.003 PubMed DOI
Socha R., Kodrík D. (1999). Differences in adipokinetic response of Pyrrhocoris apterus (Heteroptera) in relation to wing dimorphism and diapause. Physiol. Entomol. 24, 278–284. 10.1046/j.1365-3032.1999.00143.x DOI
Sparagana S. P., Bhaskaran G., Barrera P. (1985). Juvenile hormone acid methyltransferase activity in imaginal discs of Manduca sexta prepupae. Arch. Insect Biochem. Physiol. 2, 191–202. 10.1002/arch.940020207 DOI
Sun C., Zhang S. (2015). Immune-relevant and antioxidant activities of vitellogenin and yolk proteins in fish. Nutrients 7, 8818–8829. 10.3390/nu7105432 PubMed DOI PMC
Toth A. L., Varala K., Newman T. C., Miguez F. E., Hutchison S. K., Willoughby D. A., et al. . (2007). Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318, 441–444. 10.1126/science.1146647 PubMed DOI
Vafopoulou X. (2014). The coming of age of insulin-signaling in insects. Front. Physiol. 5:216. 10.3389/fphys.2014.00216 PubMed DOI PMC
Valle D. (1993). Vitellogenesis in insects and other groups: a review. Mem. Inst. Oswaldo Cruz 88, 1–26. PubMed
Van der Horst D. J.. (2003). Insect adipokinetic hormones: release and integration of flight energy metabolism. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 136, 217–226. 10.1016/S1096-4959(03)00151-9 PubMed DOI
Vargo E. L., Laurel M. (1994). Studies on the mode of action of a queen primer pheromone of the fire ant Solenopsis invicta. J. Insect Physiol. 40, 601–610. 10.1016/0022-1910(94)90147-3 DOI
Veenstra J. A., Rodriguez L., Weaver R. J. (2012). Allatotropin, leucokinin and AKH in honey bees and other Hymenoptera. Peptides 35, 122–130. 10.1016/j.peptides.2012.02.019 PubMed DOI
Venugopal K. J., Kumar D. (2000). Role of juvenile hormone in the synthesis and sequestration of vitellogenins in the red cotton stainer, Dysdercus koenigii (Heteroptera: Pyrrhocoridae). Comp. Biochem. Physiol. C Toxicol. Pharrmacol. 127, 153–163. 10.1016/S0742-8413(00)0 PubMed DOI
Verlinden H., Lismont E., Bil M., Urlacher E., Mercer A., Vanden Broeck J., et al. . (2013). Characterisation of a functional allatotropin receptor in the bumblebee, Bombus terrestris (Hymenoptera, Apidae). Gen. Comp. Endocrinol. 193, 193–200. 10.1016/j.ygcen.2013.08.006 PubMed DOI
Wang Y., Brent C. S., Fennern E., Amdam G. V. (2012). Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS Genet. 8:e1002779. 10.1371/journal.pgen.1002779 PubMed DOI PMC
Warnes G. R., Bolker B., Bonebakker L., Gentleman R., Liaw W. H. A., Lumley T. (2015). gplots: Various R Programming Tools for Plotting Data. Available online at: http://CRAN.R-project.org/package = gplots
Weil T., Korb J., Rehli M. (2009). Comparison of queen-specific gene expression in related lower termite species. Mol. Biol. Evol. 26, 1841–1850. 10.1093/molbev/msp095 PubMed DOI
Woodard S. H., Bloch G. M., Band M. R., Robinson G. E. (2014). Molecular heterochrony and the evolution of sociality in bumblebees (Bombus terrestris). Proc. R. Soc. B 281:20132419. 10.1098/rspb.2013.2419 PubMed DOI PMC
Woodard S. H., Fischman B. J., Venkat A., Hudson M. E., Varala K., Cameron S. A., et al. . (2011). Genes involved in convergent evolution of eusociality in bees. Proc. Natl. Acad. Sci. U.S.A. 108, 7472–7477. 10.1073/pnas.1103457108 PubMed DOI PMC
Woodring J., Hoffmann K. H., Lorenz M. W. (2003). Identification and function of the hypotrehalosaemic hormone (Mas-AKH) in workers, drones and queens of Apis mellifera ligustica and A. m. carnica. J. Apicult. Res. 42, 4–8. 10.1080/00218839.2003.11101078 DOI
Wurm Y., Wang J., Riba-Grognuz O., Corona M., Nygaard S., Hunt B. G., et al. . (2011). The genome of the fire ant Solenopsis invicta. Proc. Natl. Acad. Sci. U.S.A. 108, 5679–5684. 10.1073/pnas.1009690108 PubMed DOI PMC
Wyatt G. R., Davey K. G. (1996). Cellular and molecular actions of juvenile hormone. II. Roles of juvenile hormone in adult insects. Adv. Insect Physiol. 26, 1–155. 10.1016/S0065-2806(08)60030-2 DOI
Xu H.-J., Xue J., Lu B., Zhang X.-C., Zhuo J.-C., He S.-F., et al. . (2015). Two insulin receptors determine alternative wing morphs in planthoppers. Nature 519, 464–467. 10.1038/nature14286 PubMed DOI
Žáček P., Prchalová-Hornáková D., Tykva R., Kindl J., Vogel H., Svatoš A., et al. . (2013). De novo biosynthesis of sexual pheromone in the labial gland of bumblebee males. ChemBioChem 14, 361–371. 10.1002/cbic.201200684 PubMed DOI
Unusual functions of insect vitellogenins: minireview