Unusual functions of insect vitellogenins: minireview
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
38165752
PubMed Central
PMC10861248
DOI
10.33549/physiolres.935221
PII: 935221
Knihovny.cz E-zdroje
- MeSH
- ekdysteroidy * metabolismus MeSH
- hmyz metabolismus MeSH
- juvenilní hormony metabolismus MeSH
- ovarium metabolismus MeSH
- vitelogeniny * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ekdysteroidy * MeSH
- juvenilní hormony MeSH
- vitelogeniny * MeSH
Insect vitellogenins are an intriguing class of complex proteins. They primarily serve as a source of energy for the developing embryo in insect eggs. Vitellogenesis is a complex hormonally and neurally controlled process that command synthesis of vitellogenin molecules and ensures their transport from the female fat bodies or ovarial cells into eggs. The representatives of all insect hormones such as juvenile hormones, ecdysteroids, and neurohormones participate in vitellogenesis, but juvenile hormones (most insect species) and ecdysteroids (mostly Diptera) play the most important roles in the process. Strikingly, not only insect females, but also males have been reported to synthesize vitellogenins indicating their further utility in the insect body. Indeed, it has recently been found that vitellogenins perform a variety of biological functions in the insect body. They participate in defense reactions against entomopathogens such as nematodes, fungi, and bacteria, as well as against venoms such as the honeybee Apis mellifera venom. Interestingly, vitellogenins are also present in the venom of the honeybee itself, albeit their exact role is unknown; they most likely increase the efficacy of the venom in the victim's body. Within the bee's body vitellogenins contribute to the lifespan regulation as anti-aging factor acting under tight social interactions and hormonal control. The current minireview covers all of these functions of vitellogenins and portrays them as biologically active substances that play a variety of significant roles in both insect females and males, and not only acting as passive energy sources for developing embryo.
Zobrazit více v PubMed
Chapman RF. The Insects, Structure and Function. Cambridge University Press; Cambridge: 1998. p. 770.
Sappington TW, Raikhel AS. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Mol Biol. 1998;28:277–300. doi: 10.1016/S0965-1748(97)00110-0. PubMed DOI
Tufail M, Raikhel AS, Takeda M. Biosynthesis and processing of insect vitellogenins. In: RAIKHEL AS, SAPPINGTON TW, editors. Progress in Vitellogenesis. Reproductive Biology of Invertebrates. Part B. XII. Science Publishers, Inc; Enfield: 2004. pp. 1–32.
Raikhel AS, Arden OL. Previtellogenic development and vitellogenin synthesis in the fat body of a mosquito: an ultrastructural and immunocytochemical study. Tissue Cell. 1983;15:281–299. doi: 10.1016/0040-8166(83)90023-X. PubMed DOI
Raikhel AS, Dhadialla TS. Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol. 1992;37:217–251. doi: 10.1146/annurev.en.37.010192.001245. PubMed DOI
Klowden MJ. Physiological Systems in Insects. Elsevier Inc; Amsterdam: 2007. p. 688. DOI
Snigirevskaya ES, Sappington TW, Raikhel AS. Internalization and recycling of vitellogenin receptor in the mosquito oocyte. Cell Tissue Res. 1997;290:175–183. doi: 10.1007/s004410050919. PubMed DOI
Pearse BMF, Robinson MS. Clathrin, adaptors and sorting. Annu Rev Cell Biol. 1990;6:151–171. doi: 10.1146/annurev.cb.06.110190.001055. PubMed DOI
Sappington TW, Oishi K, Raikhel AS. Structural characteristics of insect vitellogenin. In: RAIKHEL AS, SAPPINGTON TW, editors. Recent Progress in Vitellogenesis. Reproductive Biology of Invertebrates. XII. John Wiley; Chichester: 2002. pp. 69–101.
Raikhel AS, Kokoza VA, Zhu JS, Martin D, Wang SF, Li C, Sun GQ, Ahmed A, Dittmer N, Attardo G. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol. 2002;32:1275–1286. doi: 10.1016/S0965-1748(02)00090-5. PubMed DOI
Gadot M, Applebaum SW. Rapid in vitro activation of corpora allata by extracted locust brain allatotropic factor. Arch Insect Biochem Physiol. 1985;2:117–129. doi: 10.1002/arch.940020202. DOI
Telfer WH, Woodruff RI. Ion physiology of vitellogenic follicles. J Insect Physiol. 2002;48:915–923. doi: 10.1016/S0022-1910(02)00152-X. PubMed DOI
Lanot R, Thiebold J, Lagueux M, Goltzene F, Hoffmann JA. Involvement of ecdysone in the control of meiotic reinitiation in oocytes of Locusta migratoria (Insecta, Orthoptera) Dev Biol. 1987;121:174–181. doi: 10.1016/0012-1606(87)90150-3. PubMed DOI
Moshitzky P, Applebaum SW. The role of adipokinetic hormone in the control of vitellogenesis in locusts. Insect Biochem. 1990;20:319–323. doi: 10.1016/0020-1790(90)90050-5. DOI
Riddiford LM. Hormones and Drosophila development. In: BATE M, MARTINEZ ARIAS A, editors. The Development of Drosophila melanogaster. Vol. 2. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 1993. pp. 899–939.
Yin CM, Zou BX, Li MF, Stoffolano JG. Discovery of a midgut peptide hormone which activates the endocrine cascade leading to oögenesis in Phormia regina (Meigen) J Insect Physiol. 1994;40:283–292. doi: 10.1016/0022-1910(94)90068-X. DOI
Zou BX, Yin CM, Stoffolano JG, Tobe SS. Juvenile hormone biosynthesis and release during oocyte development in Phormia regina Meigen. Physiol Entomol. 1989;14:233–239. doi: 10.1111/j.1365-3032.1989.tb00956.x. DOI
Zhai QH, Postlethwait JH, Bodley JW. Vitellogenin synthesis in the lady beetle Coccinella septempunctata. Insect Biochem. 1984;14:299–305. doi: 10.1016/0020-1790(84)90064-7. DOI
Peferoen M, De Loof A. Synthesis of vitellogenin and non-vitellogenic yolk proteins by the fat body and the ovary of Letinotarsa decemlineata. Comp Biochem Physiol B. 1986;83:251–254. doi: 10.1016/0305-0491(86)90362-7. DOI
Melo ACA, Valle D, Machado EA, Salerno AP, Paiva-Silva GO, de Souza W, Masuda H. Synthesis of vitellogenin by the follicle cells of Rhodnius prolixus. Insect Biochem Mol Biol. 2000;30:549–557. doi: 10.1016/S0965-1748(00)00023-0. PubMed DOI
Lamy M. Vitellogenesis, vitellogenin and vitellin in the males of insects - a review. Int J Invertebr Reprod. 1984;7:311–321. doi: 10.1080/01688170.1984.10510107. DOI
Němec V, Kodrík D, Matolín S, Laufer H. Juvenile hormone effects of retinoic acid in insect metamorphosis, embryogenesis and reproduction. J Insect Physiol. 1993;39:1083–1093. doi: 10.1016/0022-1910(93)90132-B. DOI
Kodrík D, Ibrahim E, Gautam UK, Čapková-Frydrychová R, Bednářová A, Krištůfek V, Jedlička P. Changes in vitellogenin expression caused by nematodal and fungal infections in insects. J Exp Biol. 2019;222:jeb202853. doi: 10.1242/jeb.202853. PubMed DOI
Villar G, Grozinger CM. Primer effects of the honeybee, Apis mellifera, queen pheromone 9-ODA on drones. Anim Behav. 2017;127:271–279. doi: 10.1016/j.anbehav.2017.03.023. DOI
Jedlička P, Ernst UR, Votavová A, Hanus R, Valterová I. Gene expression dynamics in major endocrine regulatory pathways along the transition from solitary to social life in a bumblebee, Bombus terrestris. Front Physiol. 2016;7:574. doi: 10.3389/fphys.2016.00574. PubMed DOI PMC
Havukainen H, Münch D, Baumann A, Zhong S, Halskau Ø, Krogsgaard M, Amdam GV. Vitellogenin recognizes cell damage through membrane binding and shields living cells from reactive oxygen species. J Biol Chem. 2013;288:28369–28381. doi: 10.1074/jbc.M113.465021. PubMed DOI PMC
Singh NK, Pakkianathan BC, Kumar M, Prasad T, Kannan M, Konig S, Krishnan M. Vitellogenin from the silkworm, Bombyx mori: an effective anti-bacterial agent. PLoS One. 2013;8:e73005. doi: 10.1371/journal.pone.0073005. PubMed DOI PMC
Salmela H, Amdam GV, Freitak D. Transfer of immunity from mother to offspring is mediated via egg-yolk protein vitellogenin. PLoS Pathog. 2015;11:e1005015. doi: 10.1371/journal.ppat.1005015. PubMed DOI PMC
Salmela H, Sundstrom L. Vitellogenin in inflammation and immunity in social insects. Inflamm Cell Signal. 2017;4:e1506. doi: 10.14800/ics.1506. DOI
Park HG, Lee SK, Kim BY, Yoon HJ, Choi YS, Lee KY, Wan H, Li J, Jin BR. Honeybee (Apis cerana) vitellogenin acts as antimicrobial and antioxidant agent in the body and venom. Dev Comp Immunol. 2018;85:51–60. doi: 10.1016/j.dci.2018.04.001. PubMed DOI
Simões N, Caldas C, Rosa JS, Bonifassi E, Laumond C. Pathogenicity caused by high virulent and low virulent strains of Steinernema carpocapsae to Galleria mellonella. J Invertebr Pathol. 2000;75:47–54. doi: 10.1006/jipa.1999.4899. PubMed DOI
Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol. 2003;21:1307–1313. doi: 10.1038/nbt886. PubMed DOI
Wang Z, Wilhelmsson C, Hyršl P, Loof TG, Dobeš P, Klupp M, Loseva O, et al. Pathogen entrapment by transglutaminase-A conserved early innate immune mechanism. PLoS Pathog. 2010;6:1–9. doi: 10.1371/journal.ppat.1000763. PubMed DOI PMC
Hyršl P, Dobeš P, Wang Z, Hauling T, Wilhelmsson C, Theopold U. Clotting factors and eicosanoids protect against nematode infections. J Innate Immun. 2011;2:65–70. doi: 10.1159/000320634. PubMed DOI
Arefin B, Kučerová L, Dobeš P, Markus R, Strnad H, Wang Z, Hyršl P, Zurovec M, Theopold U. Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J Inn Immun. 2014;6:192–204. doi: 10.1159/000353734. PubMed DOI PMC
Kodrík D, Bednářová A, Zemanová M, Krishnan N. Hormonal regulation of response to oxidative stress in insects - an update. Int J Mol Sci. 2015;16:25788–25816. doi: 10.3390/ijms161025788. PubMed DOI PMC
Kodrík D. Adipokinetic hormone functions that are not associated with insect flight. Physiol Entomol. 2008;33:171–180. doi: 10.1111/j.1365-3032.2008.00625.x. DOI
Zhang WN, Xiao HJ, Liang GM, Guo YY, Wu KM. Tradeoff between reproduction and resistance evolution to Bt-toxin in Helicoverpa armigera: Regulated by vitellogenin gene expression. Bull Entomol Res. 2014;104:444–452. doi: 10.1017/S0007485314000066. PubMed DOI
Huang L, Lu M, Han G, Dua Z, Wang K. Sublethal effects of chlorantraniliprole on development, reproduction and vitellogenin gene (CsVg) expression in the rice stem borer, Chilo suppressalis. Pest Manag Sci. 2016;72:2280–2286. doi: 10.1002/ps.4271. PubMed DOI
Hlávková D, Skoková Habuštová O, Půža V, Vinokurov K, Kodrík D. Role of adipokinetic hormone in the Colorado potato beetle, Leptinotarsa decemlineata infected with the entomopathogenic nematode Steinernema carpocapsae. Comp Biochem Physiol C. 2022;262:109466. doi: 10.1016/j.cbpc.2022.109466. PubMed DOI
Hajek AE, Leger RJS. Interactions between fungal pathogens and insect hosts. In: MITTLER TE, RADOVSKY FJ, RESH VH, editors. Annu Rev Entomol. Annual Reviews Inc; Palo Alto, USA: 1994. pp. 293–322. DOI
Ali S, Huang Z, Ren S. Production of cuticle degrading enzymes by Isaria fumosorosea and their evaluation as a biocontrol agent against diamondback moth. J Pest Sci. 2010;83:361–370. doi: 10.1007/s10340-010-0305-6. DOI
Luangsa-Ard JJ, Berkaew P, Ridkaew R, Hywel-Jones NL, Isaka M. A beauvericin hot spot in the genus Isaria. Mycol Res. 2009;113:1389–1395. doi: 10.1016/j.mycres.2009.08.017. PubMed DOI
BenVau LR, Nieh JC. Larval honey bees infected with Nosema ceranae have increased vitellogenin titers as young adults. Sci Rep. 2017;7:14144. doi: 10.1038/s41598-017-14702-4. PubMed DOI PMC
Sinpoo C, Paxton RJ, Disayathanoowat T, Krongdang S, Chantawannakul P. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response. J Insect Physiol. 2018;105:1–8. doi: 10.1016/j.jinsphys.2017.12.010. PubMed DOI
Dickel F, Bos NMP, Hughes H, Martin-Hernandez R, Higes M, Kleiser A, Freitak D. The oral vaccination with Paenibacillus larvae bacterin can decrease susceptibility to American Foulbrood infection in honey bees-A safety and efficacy study. Front Vet Sci. 2022;9:946237. doi: 10.3389/fvets.2022.946237. PubMed DOI PMC
Harwood G, Amdam G. Vitellogenin in the honey bee midgut. Apoidologie. 2021;52:837–847. doi: 10.1007/s13592-021-00869-3. DOI
Sadd BM, Kleinlogel Y, Schmid-Hempel R, Schmid-Hempel P. Trans-generational immune priming in a social insect. Biol Lett. 2005;1:386–388. doi: 10.1098/rsbl.2005.0369. PubMed DOI PMC
Harwood G, Amdam G, Freitak D. The role of vitellogenin in the transfer of immune elicitors from gut to hypopharyngeal glands in honey bees (Apis mellifera) J Insect Physiol. 2019;112:90–100. doi: 10.1016/j.jinsphys.2018.12.006. PubMed DOI
Lang S, Simone-Finstrom M, Healy K. Context-dependent viral transgenerational immune priming in honey bees (Hymenoptera: Apidae) J Insect Sci. 2022;22:19. doi: 10.1093/jisesa/ieac001. PubMed DOI PMC
Huo Y, Liu W, Zhang F, Chen X, Li L, Liu Q, Zhou Y, Wei T, Fang R, Wang X. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLOS Pathog. 2014;10:e1003949. doi: 10.1371/journal.ppat.1003949. PubMed DOI PMC
Whitfield AE, Falk BW, Rotenberg D. Insect vector-mediated transmission of plant viruses. Virology. 2015;479:278–289. doi: 10.1016/j.virol.2015.03.026. PubMed DOI
Moreno M, Girald E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins. 2015;7:1126–1150. doi: 10.3390/toxins7041126. PubMed DOI PMC
Lubawy J, Urbanski A, Mrówczynska L, Matuszewska E, Swiatły-Błaszkiewicz A, Matysiak J, Rosinski R. The influence of bee venom melittin on the functioning of the immune system and the contractile activity of the insect heart - A preliminary study. Toxins. 2019;11:494. doi: 10.3390/toxins11090494. PubMed DOI PMC
Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther. 2007;115:246–270. doi: 10.1016/j.pharmthera.2007.04.004. PubMed DOI
Chen J, Lariviere WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Prog Neurobiol. 2010;92:151–183. doi: 10.1016/j.pneurobio.2010.06.006. PubMed DOI PMC
Horan KL, Adamski SW, Ayele W, Langone JJ, Grega GJ. Evidence that prolonged histamine suffusions producetransient increases in vascular permeability subsequent to the formation of venular macro-molecular leakage sites. Proof of the Majno-Palade hypothesis. Am J Pathol. 1986;123:570–576. PubMed PMC
Blenau W, Baumann A. Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol. 2001;4:13–38. doi: 10.1002/arch.1055. PubMed DOI
Bodláková K, Černý J, Štěrbová H, Guráň R, Zítka O, Kodrík D. Insect body defence reactions against bee venom: do adipokinetic hormones play a role? Toxins. 2022;14:11. doi: 10.3390/toxins14010011. PubMed DOI PMC
Blank S, Seismann H, McIntyre M, Ollert M, Wolf S, Bantleon FI, Spillner E. Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v. 6) of Apis mellifera and Vespula vulgaris venom. PLoS One. 2013;8:e62009. doi: 10.1371/journal.pone.0062009. PubMed DOI PMC
Kodrík D, Krištůfek V, Svobodová Z. Bee year: Basic physiological strategies to cope with seasonality. Comp Biochem Physiol A Mol Integr Physiol. 2022;264:111115. doi: 10.1016/j.cbpa.2021.111115. PubMed DOI
Kunc M, Dobeš P, Hurychová J, Vojtek L, Poiani SB, Danihlík J, Havlík J, Titěra D, Hyršl P. The year of the honey bee (Apis mellifera L.) with respect to its physiology and immunity: a search for biochemical markers of longevity. Insects. 2029;10:244. doi: 10.3390/insects10080244. PubMed DOI PMC
Koubová J, Sábová M, Brejcha M, Kodrík D, Čapková Frydrychová R. Seasonal changes in telomerase activity in relation to cell size, DNA replication, and nutrient contents in the fat body of Apis mellifera. Sci Rep. 2021;11:592. doi: 10.1038/s41598-020-79912-9. PubMed DOI PMC
Chai L, Yang XY, Liu M, Liu CY, Han LM, Guo H, Li CS, et al. Biopanning of allergens from wasp sting patients. Biosci Rep. 2018;38:BSR20181113. doi: 10.1042/BSR20181113. PubMed DOI PMC
Baek JH, Lee SH. Identification and characterization of venom proteins of two solitary wasps, Eumenes pomiformis and Orancistrocerus drewseni. Toxicon. 2010;56:554–562. doi: 10.1016/j.toxicon.2010.05.014. PubMed DOI
Beckman KB, Ames BN. Mitochondrial aging: open questions. Ann N Y Acad Sci. 1998;854:118–127. doi: 10.1111/j.1749-6632.1998.tb09897.x. PubMed DOI
Fridovich I. Biology of oxygen radicals. Science. 1978;201:875–880. doi: 10.1126/science.210504. PubMed DOI
Krishnan N, Kodrík D, Turanli F, Sehnal F. Stage specific distribution of oxidative radicals and antioxidant enzymes in the midgut of Leptinotarsa decemlineata. J Insect Physiol. 2007;53:67–74. doi: 10.1016/j.jinsphys.2006.10.001. PubMed DOI
Bednářová A, Kodrík D, Krishnan N. Adipokinetic hormone exerts its anti-oxidative effects using a conserved signal-transduction mechanism involving both PKC and cAMP by mobilizing extra- and intracellular Ca2+ stores. Comp Biochem Physiol C. 2013;158:142–149. doi: 10.1016/j.cbpc.2013.07.002. PubMed DOI
Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci U S A. 2006;103:962–967. doi: 10.1073/pnas.0502681103. PubMed DOI PMC
Amdam GV, Simoes ZLP, Hagen A, Norberg K, Schrøder K, Mikkelsen Ø, Kirkwood TBL, Omholt SW. Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp Gerontol. 2004;39:767–773. doi: 10.1016/j.exger.2004.02.010. PubMed DOI
Allard JB, Duan C. Comparative endocrinology of aging and longevity regulation. Front Endocrinol. 2011;2:1–23. doi: 10.3389/fendo.2011.00075. PubMed DOI PMC
Partridge L, Gems D, Withers DJ. Sex and death: What is the connection? Cell. 2005;120:461–472. doi: 10.1016/j.cell.2005.01.026. PubMed DOI
Mair W, Piper MDW, Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 2005;3:1305–1311. doi: 10.1371/journal.pbio.0030223. PubMed DOI PMC
Reznick D. Costs of reproduction: an evaluation of the empirical evidence. Oikos. 1985;44:257–267. doi: 10.2307/3544698. DOI
Harshman LG, Zera AJ. The cost of reproduction: the devil in the details. Trends Ecol Evol. 2007;22:80–86. doi: 10.1016/j.tree.2006.10.008. PubMed DOI
Dubrovsky EB. Hormonal cross talk in insect development. Trends Endocrinol Metab. 2005;16:6–11. doi: 10.1016/j.tem.2004.11.003. PubMed DOI
Tatar M, Yin C. Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms. Exp Gerontol. 2001;36:723–738. doi: 10.1016/S0531-5565(00)00238-2. PubMed DOI
Tu MP, Epstein D, Tatar M. The demography of slow aging in male and female Drosophila mutant for the insulin-receptor substrate homologue chico. Aging Cell. 2002;1:75–80. doi: 10.1046/j.1474-9728.2002.00010.x. PubMed DOI
Tu MP, Yin CM, Tatar M. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol. 2005;142:347–356. doi: 10.1016/j.ygcen.2005.02.009. PubMed DOI
Altaratz M, Applebaum SW, Richard DS, Gilbert LI, Segal D. Regulation of juvenile hormone synthesis in wild-type and apterous mutant Drosophila. Mol Cell Endocrinol. 1991;81:205–216. doi: 10.1016/0303-7207(91)90219-I. PubMed DOI
Herman WS, Tatar M. Juvenile hormone regulation of longevity in the migratory monarch butterfly. Proc R Soc B Biol Sci. 2001;268:2509–2514. doi: 10.1098/rspb.2001.1765. PubMed DOI PMC
Pinto LZ, Bitondi MM, Simões ZL. Inhibition of vitellogenin synthesis in Apis mellifera workers by a juvenile hormone analogue, pyriproxyfen. J Insect Physiol. 2000;46:153–160. doi: 10.1016/S0022-1910(99)00111-0. PubMed DOI
Amdam GV, Omholt SW. The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J Theor Biol. 2003;223:451–464. doi: 10.1016/S0022-5193(03)00121-8. PubMed DOI
Fluri P, Luscher M, Wille H, Gerig L. Changes in weight of the pharyngeal gland and hemolymph titers of juvenile-hormone, protein and vitellogenin in worker honey bees. J Insect Physiol. 1982;28:61–68. doi: 10.1016/0022-1910(82)90023-3. DOI
Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, Robinson GE. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci U S A. 2007;104:7128–7133. doi: 10.1073/pnas.0701909104. PubMed DOI PMC
Ament SA, Corona M, Pollock HS, Robinson GE. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc Natl Acad Sci U S A. 2008;105:4226–4231. doi: 10.1073/pnas.0800630105. PubMed DOI PMC
Wang Y, Brent CS, Fennern E, Amdam GV. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS Genet. 2012;8:e1002779. doi: 10.1371/journal.pgen.1002779. PubMed DOI PMC
Huang ZY, Robinson GE. Seasonal changes in juvenile hormone titers and rates of biosynthesis in honey bees. J Comp Physiol B. 1995;165:18–28. doi: 10.1007/BF00264682. PubMed DOI
Fluri P, Bogdanov S. Effects of Artificial Shortening of the Photoperiod on Honeybee (Apis mellifera) Polyethism. J Apic Res. 1987;26:83–89. doi: 10.1080/00218839.1987.11100742. DOI
Brejcha M, Prušáková D, Sábová M, Peška V, Černý J, Kodrík D, Konopová B, Čapková Frydrychová R. Seasonal changes in ultrastructure and gene expression in the fat body of worker honey bees. J Insect Physiol. 2023;17:104504. doi: 10.1016/j.jinsphys.2023.104504. PubMed DOI
Čapková Frydrychová RC. Telomerase as a possible key to bypass the cost of reproduction effect. Mol Ecol. 2023;32:2134–2143. doi: 10.1111/mec.16870. PubMed DOI
Keller L, Genoud M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature. 1997;389:958–960. doi: 10.1038/40130. DOI
Amdam GV, Omholt SW. The regulatory anatomy of honeybee lifespan. J Theor Biol. 2002;216:209–228. doi: 10.1006/jtbi.2002.2545. PubMed DOI